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At ignition, 
Gain=40 



Simulations indicate that polar drive (PD) is a promising 
ignition alternative for the NIF 

• A 2-D simulation of the polar-drive hot-spot point ignition 
design shows a gain of 40 with target and laser nonuniformities 

• This design employs three relaxation pickets for adiabat 
shaping and to facilitate experimental shock timing  

• This design employs a thick plastic ablator to mitigate the 
effects of hot-electron preheat 

Summary 
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Outline 

• Polar Drive: Background and 
Lessons Learned 

• The elements of the new Hot Spot, 
Triple-Picket Polar-Drive point design 



In polar drive, the NIF x-ray-drive beams are pointed to 
three latitude rings in each hemisphere on the target 

 S. Skupsky et al., Phys. Plasmas 11, 2763 (2004). 

83 

• This is also relevant to IFE, insofar as polar 
port geometry is desired 
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Repointing corresponds to a lateral translation of the 
beam in the target plane 

Oblique irradiation near the equator is at lower densities, causing  
• reduced absorption 
• reduced hydrodynamic efficiency and  
• lateral heat flow 

30 44 

400 mm 

Ring 3 

Ring 3 

Rings 4, 5 

Repointing rings 4,5 
moves energy to the equator 



Lower super-Gaussian beam-shape orders offer greater 
control of the energy density on the target 

• Less energy is spilled over the horizon when lower super-Gaussian-order 
beams are repointed 

Polar Angle [degrees]

In
te

ns
ity

(W
cm

-2
)

0 30 60 900

1

Ring 2, Repointed from 30 to 44 

SG 2.2 (solid) 

SG 5.0 (dashed) 



Independent ring pulse shapes are used to compensate 
for variations in angle of incidence 

• The equatorial rings are driven at a higher power than the other rings 

• The mid-latitude rings must be lowered due to beam overlap 

• The polar ring power is raised for the same reason 

• Pickets and drive pulse required different relative ring powers; using ring 
pulse shapes which are multiples of each other reduces this target’s gain 
by 40% 

independent scaled 



Equatorial beam coupling can be increased  
using tailored phase plates 

• The equatorial spot shape combines a round spot with an 
elliptical spot to mitigate loss of coupling near the equator 

• The resulting spot is asymmetric to reduce loss of energy over 
the horizon 



The triple-picket design uses a multiple-picket,  
multiple-shock laser pulse 

• This design is based on the triple-picket design* used on OMEGA to achieve 
an areal density of nearly 300 mg/cm2** 

• A thick CH ablator is used to minimize the risk of hot-electron preheat 

• Individual pulse energies lie within NIF limits for energy (9.3 kJ/beam) and 
power/beam 

 * V. N. Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010).  
** T. C. Sangster et al., Phys. Plasmas 17, 056312 (2010). 
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A relaxation-picket pulse is used  
with a rapid-rise drive pulse 

• OMEGA experiments have demonstrated that 
picket pulses are better suited to experimental 
shock tuning because of greater pulse 
reproducibility* 

• Use of a rapid-rise drive pulse reduces 
uncertainties in shock timing caused by low-
adiabat slow-rise pulses 

• Relaxation pickets, for which the laser power is 
small or zero between the pickets, allow greater 
adiabat shaping and greater shell stability** 

• Subsequent pickets must have diminishing 
relaxation times, limiting the number of pickets 

• A “step” pulse is used at the start of the drive to 
allow a lower drive-pulse power 
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 * T. R. Boehly et al., Phys. Plasmas 16, 056302 (2009). 
** K. Anderson and R. Betti, Phys. Plasmas 11, 5 (2004).  
 



The triple-picket PD design with target and beam 
nonuniformities and Multi-FM beam smoothing* 
achieves a gain of 40 

• One-mm RMS ice roughness is included as well as single-beam imprint 
([2,100]), 8% RMS power imbalance, 30-ps RMS beam mistiming, 50-mm 
beam mis-pointing and surface roughness 

 * See Marozas, next talk 
 

At ignition, 10.3 ns • Flux-limited diffusive thermal transport 
was used (6%) 

• Gas density = 0.225 g cm-3 

Energy 1.54 MJ 

Gain 40 

vimp 440 mm/ns 

Shell integrity 26% 

a 2 

Peak rR 1.42 g/cm2 



The triple-picket PD ignition design was optimized  
in 1-D with a downhill simplex method 

• This points in the pulse shape 
(power, time) and target dimensions 
were optimized  

• This design was optimized to 
maximize gain while requiring peak 
power not to exceed damage 
threshold limits, in turn fixing the 
implosion velocity 

• This method allows for tuning of 
more variables than would be 
feasible by hand (in this case, 12) 

• Other metrics have proven useful:     
f(Gain, IFAR, rR), etc. 

 



An =2 ice-layer “shim” is used  
to lower the equatorial mass 
• An 11.5-mm =2 ice-layer “shim” is used to lower the equatorial mass and 

compensate for reduced equatorial drive 

• This perturbation could be introduced by shimming the cryogenic layering 
sphere itself or adding an IR source around the equator 

• The resulting perturbation would be repeatable but not necessarily precise 

• A 10-mm shim allows a ~10% reduction in equatorial beam power, allowing 
greater overall power while remaining below laser damage thresholds 
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Simulations show little gain degradation  
when SSD is only active for the first picket 
• Motivation: “Turning off” SSD early reduces the risk of damage to 

the laser 

• Single-beam smoothing asymptotes on timescales comparable to 1 
ns (Marozas, this session) 

 

 P. W. McKenty et al., Bull. Am. Phys. Soc. 51, 295 (2006). 



Future work includes modeling of plasma effects 

• A 2-D Schurtz-type nonlocal thermal transport model has been 
implemented in DRACO by G. Moses and his team at U. Wisconsin 
and is currently being tested 

• A cross-beam energy transfer package is under development for 
DRACO 2D 

• This design will be simulated in HYDRA in 2D and 3D 

– Enhancements to HYDRA’s 3D ray trace are underway for use in 
direct-drive simulations 

• A scaled version of the design is under development 

 



Simulations indicate that polar drive (PD) is a promising 
ignition alternative for the NIF 

• A 2-D simulation of the polar-drive hot-spot point ignition 
design shows a gain of 40 with target and laser nonuniformities 

• This design employs three relaxation pickets for adiabat 
shaping and to facilitate experimental shock timing  

• This design employs a thick plastic ablator to mitigate the 
effects of hot-electron preheat 

Summary/Conclusions 



Sensitivity (1-D) 

• … 


