Progress in the development of an “all DT” NIF shock ignition target

Matthew R. Terry, L. John Perkins
Lawrence Livermore National Laboratory

International Workshop on ICF Shock Ignition
March 8, 2011

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551
Laser pulse shape for the all-DT design uses a picket + 3 pedestals for fuel compression

- Triangle picket
 - Sets adiabat
 - Smooths laser imprint
 - Sets shock breakout time
- 3 pedestals
 - “foot,” “shock 2,” “shock 3”
 - Compress fuel in-place to high density
- Moderate intensity main compression pulse
 - Implodes target
 - Less intense, slower implosion than conventional “fast compression”
 - Large ρR, but temperature too small to burn
- High intensity shock
 - Launches a strong shock
 - Additional compression
 - Temperature > 10 keV
NIF is a viable platform for demonstrating shock ignition

- Polar direct drive configuration
- 24 compression quads focused at initial radius
- 24 shock quads focused at shock-launch radius
- Sufficient energy
 - \(~0.6\text{MJ for near-term high-gain targets}\)
 - \(\geq 1.3\text{ MJ for high yield designs}\)
- Strong ignitor shocks due to
 - large peak power (400 TW)
 - 250 ps rise time (upgradable to 100ps?)
- Would need a new cryostat
Slow, thick DT ablator design should mitigate Rayleigh-Taylor growth during implosion phase

<table>
<thead>
<tr>
<th>Aspect Ratio</th>
<th>3.16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implosion velocity (km/s)</td>
<td>303</td>
</tr>
<tr>
<td>In flight adiabat</td>
<td>1.56</td>
</tr>
<tr>
<td>Max rhoR</td>
<td>1.95</td>
</tr>
<tr>
<td>Convergence ratio</td>
<td>32</td>
</tr>
<tr>
<td>IFAR (at 2/3 r0)</td>
<td>20</td>
</tr>
<tr>
<td>Yield (MJ)</td>
<td>32</td>
</tr>
<tr>
<td>Gain</td>
<td>52</td>
</tr>
<tr>
<td>Compression energy (kJ)</td>
<td>308</td>
</tr>
<tr>
<td>Shock energy (kJ)</td>
<td><300</td>
</tr>
<tr>
<td>Total energy (kJ)</td>
<td><608</td>
</tr>
<tr>
<td>Integrated laser energy efficiency</td>
<td>56%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Segment</th>
<th>Power (TW)</th>
<th>Launch (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picket</td>
<td>8.55</td>
<td>0.</td>
</tr>
<tr>
<td>Foot</td>
<td>0.75</td>
<td>2.85</td>
</tr>
<tr>
<td>Shock 2</td>
<td>3.48</td>
<td>8.08</td>
</tr>
<tr>
<td>Shock 3</td>
<td>16.15</td>
<td>9.85</td>
</tr>
<tr>
<td>Main</td>
<td>115.</td>
<td>10.85</td>
</tr>
<tr>
<td>Shock (all beams)</td>
<td>350.</td>
<td>13.41</td>
</tr>
</tbody>
</table>
Updated target improves on previously circulated all-DT design

<table>
<thead>
<tr>
<th>Changed Quantity</th>
<th>Old Target</th>
<th>Updated Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron Flux Limiter</td>
<td>100% at late time</td>
<td>6% sharp cut-off, all times</td>
</tr>
<tr>
<td>DT Gas Density</td>
<td>0.2 g/cc (IFE specs)</td>
<td>0.3 g/cc (NIF quench specs)</td>
</tr>
<tr>
<td>Beam Intensity Profile</td>
<td>Skupsky’s NIF fit</td>
<td>Shurtz’s fit to Craxton’s PD pointings</td>
</tr>
<tr>
<td>Picket shape</td>
<td>Zero rise-time flat-top</td>
<td>Finite rise-time triangle</td>
</tr>
<tr>
<td>Main pulse power</td>
<td>95 TW</td>
<td>115 TW</td>
</tr>
</tbody>
</table>
Polar drive intensity profile results in lower drive efficiency

- Need 2D laser intensity (radius, angle of incidence) to reasonably approximate PD laser absorption
- Refraction and shrinking targets amplify difference in efficiency
- Main pulse power increased to take advantage of larger efficiency at beginning of main pulse

\[I(r) = I_0 \exp\left(-3\left(\frac{r}{1010}\right)^4\right) \]

\[I(r) = I_0 \exp\left(-\left(\frac{r}{0.0885}\right)^2.66\right) \]
Laser pulse tuning

- Time picket and 3 compression pedestal shocks to coalesce at gas/ice interface at same time

 - Maximize pR (main launch time, main power) for fixed compression energy
 - LPI thresholds limit main power
 - Falling laser efficiency

- Scan yield (shock launch time, shock power) for fixed shock energy

- Shock power based on:
 - Yield
 - Ignition window
 - Optics damage threshold

- Actual laser energy used less than design assumptions
 - Shock pulse starts before compression energy exhausted
 - Shock remains on after burn initiates
 - 607kJ / 700 kJ for current design
Higher intensity main pulses have larger ignition windows and comparable yield.

No Rayleigh-Taylor in 1D

\(\sim 400 \text{ kJ compression energy} \)

300 kJ shock energy
• Interface between the hot spot and decelerating fuel is RT unstable

• Projecting peak velocity to $r=0$ is a useful metric for tracking RT growth

• Timing of igniter shock determines when on fall line burn initiates

• Optimal 2D/3D/reality shock timing may occur early within ignition window
Physical processes modeled by the HYDRA code for ICF simulations

- Laser light
 - 3D ray tracing
 - Spherical DD raytrace

- Magnetic fields
 - 3D MHD Resistive
 - General circuit model

- Burn products
 - TN reactions
 - Multi-group diffusion CP
 - Free streaming neutron transport
 - Monte Carlo transport of neutrons, gammas, charged particles

- Ion beams
 - 3D ray tracing
 - Monte Carlo

- Radiation
 - Single group diffusion
 - Multi-group diffusion
 - 1D/2D multigroup S_N IMC

- Electrons
 - Thermal conduction
 - Multigroup non-local
 - Relativistic PIC (link)

- Ions
 - Thermal conduction

- Atomic physics
 - Analytic EOS
 - Tabulated EOS
 - Inline QEOS
 - Tabulated LTE opacity
 - TABOP
 - Inline LTE & non-LTE
 - XSN
 - DCA NLTE

- Hydrodynamics
 - Lagrange + ALE
 - Automatic mesh motion
 - Block structured mesh
 - Reduced & enhanced Connectivity
 - Shape generation lib.
 - Isotropic strength
 - Atomic mix model

Slide courtesy of Marty Marinak
Early time resolution of the critical surface is hard

- Folklore: outer surface of ablator should have \(\sim 0.1 \, \mu m\) wide zones
- “Thick” zones seem to poorly resolve critical absorption for picket
- Energy deposits deeper than critical surface, leading to faster shocks
- Shifts shock tuning, but small effect on target performance
- Suggestions/experience from the audience?

![Graphs showing time resolution](image)
Work left to be done

- Finish transition to HYDRA

- Fill out 1D gain curve of hydrodynamically equivalent all-DT targets
 - Scale target quantities by factor “s”

\[
\frac{m}{m_0} = s^3 \quad \frac{E_{\text{laser}}}{E_{\text{laser},0}} = s^3 \quad \frac{P}{P_0} = s^2 \quad Y \sim s^3 \rho R(s)
\]

 at ~constant IFAR, ν, CR, α

- Expect \(G = \frac{Y}{E_{\text{laser}}} \sim c \cdot s^b \) (but need coefficients!)

- 2D stability (single mode→ multimode)

- Optimum beam pointings, focusings and time-dependent powers (laser PD uniformity) for
 entire implosion

- Iteration between 3D beam pointing constraints and 1D target build/pulse shape