Outbrief from the June 30-July 1 2015 Spectroscopy Workshop
National Diagnostics Workshop, Los Alamos

October 7, 2015

Marilyn Schneider
LLNL
Outline

• Overview of workshop

• Some Highlights from talks

• Review Format (what worked, what didn’t)

• Discussion Day 1: Stagnation

• Discussion Day 2: Focused Experiments on single physics issue

• Future/Follow up
 • Spectroscopy needs at Z
 • Upcoming Spectroscopy platforms at NIF
 • Should major focus of National Diagnostic Plan for Spectroscopy be calibrations?
 • calibrations
 • focused experiments

• Summary

Discussions expressed thoughts and needs but not action items
Overview

- Workshop on X-ray Spectroscopy in support of HED science at Large Scale Facilities was held at LLNL
 - 2 days (June 30, July 1) PLUS ½ day classified discussion
 - 90 participants
 - U.S. National Labs (LLNL, LANL, Sandia, LLE, PPPL, SLAC, NRL)
 - European National labs (AWE, CEA, Weizmann Institute)
 - Academic (Imperial College, Oxford U., York U., U. Nevada-Reno)
 - Businesses (Prism Corp, ARTEP, General Atomics, NSTec)
 - ~15 participants joined via the Web.

- 28 talks
 - Diagnosing plasma conditions
 - high density stagnating plasmas
 - hot, solid density high Z plasmas
 - Codes
 - Lineshapes
 - LMJ diagnostics
 - Opacity (experiment & models)
 - Calibrations
 - coronal plasmas (NLTE)
 - cold, dense plasmas (EXAFS)

A wide variety of topics were discussed. A community was built.
Some highlights: Opacity, High Resolution

Opacity Results from “Z”

- Data agree with models (TOPAZ) at 156 eV
- Data disagrees with models at 182 eV

- Correct ionization state even at 182 eV (disagreement in linewidths?)
- Disagreement in absolute value - why?
- Does model correctly capture the excited states?

Hi Resolution Spectrometer at Orion

- Measure ne and Te from He-β complex

- High resolution He-β spectra can measure ne and Te (in certain regions of (ne, Te) space)

J. Bailey (Sandia) talk C. Iglesias (LLNL) talk

E. Hill (Imperial, ALICE code) talk

P. Beiersdorfer (LLNL, Data) talk
Some highlights:

- Best lineshape calculations are computer simulations (CS)
- But codes need something *much* faster (analytical model?)
- For Ly\(\alpha\) in one component plasma (OCP), CS shows scaling in 3 regimes
 \((T = \text{temperature}, N_p = \text{perturber density})\)
 - impact (electrons) \(\sim N_p / T^{1/2}\)
 - quasi-static (“stationary ions”) \(\sim N_p^{2/3}\)
 - ”rotational” (dynamic -“moving ions”) \(\sim (T/M_p)^{1/2} N_p^{1/3}\) \((M_p \text{ reduced mass})\)

Lyman-\(\alpha\) and other \(\Delta n = 1\) lines are well described by unified impact/rotational model
Some highlights: Overview of Codes

Definitions

Atomic Structure, Transitions and Acronyms

- Detailed Term / Line Accounting: DTA / DLA
- Individual levels and transitions
- Detailed lineshapes for radiative bound-bound transitions
- Detailed Configuration Accounting: DCA
 - Levels lumped into relativistic (nℓ) or non-relativistic (nℓ)
 configurations [(Ne) 3s³3p4s]
 - Transitions between configurations described by
 Spin-Orbit Split Array: SOSA or
 Unresolved Transition Array: UTA
- Superconfiguration: SC
 - Combines configurations
 - Related by quantum numbers [(1)²[(2)³[(3)⁴[(4)]]] or similar in energy
 - Transitions between superconfigurations described by
 Super Transition Array: STA
- Screened Hydrogenic: SH
 - Method of calculating energy levels (n), (nℓ), or (nℓj) from screened charges
- Average Atom: AA
 - Uses a single average charge state with non-integer occupancies

This is list of NLTE codes discussed

<table>
<thead>
<tr>
<th>Code</th>
<th>Contact</th>
<th>Data Source</th>
<th>Atomic Structure</th>
<th>High-p degn</th>
<th>Radiation</th>
<th>Electrons hot</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALICE</td>
<td>E. Hill (Imperial)</td>
<td>RCN + (ALICE)</td>
<td>DLA / DCA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>1D</td>
</tr>
<tr>
<td>ATOMIC</td>
<td>RDCA</td>
<td>TAPS codes (LLNL)</td>
<td>DLA / DCA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>AURORA</td>
<td>J. Harris (AWE)</td>
<td></td>
<td>DLA / DCA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CRAC</td>
<td>E. Brambulinik</td>
<td>FAC</td>
<td>DLA / DCA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2T</td>
</tr>
<tr>
<td>CRETIN</td>
<td>DCA</td>
<td>SH / FAC / HULLAG</td>
<td>SC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>3D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(+ DLA / DCA)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>1D MHD CX</td>
</tr>
<tr>
<td>DZAPP</td>
<td>NRL</td>
<td>RCN / FAC</td>
<td>?</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>1D MHD</td>
</tr>
<tr>
<td>ENRICO</td>
<td>B. Wilson (LLNL)</td>
<td></td>
<td>DCA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2T</td>
</tr>
<tr>
<td>FLYCHK</td>
<td>FLYSPEC</td>
<td>FLY, BH, SC + DHB</td>
<td>FLY + SC DCA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PRISM</td>
<td>I. Golovkin</td>
<td>ATBASE</td>
<td>DLA / DCA / SC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>3D</td>
</tr>
<tr>
<td>NOMAD</td>
<td>Y. Raichenko</td>
<td>FAC</td>
<td>DLA / DCA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>1D MHD</td>
</tr>
<tr>
<td>SCFLY</td>
<td>O. Cirencosta</td>
<td>FLYCHK + DHB</td>
<td>SC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>SCRAM</td>
<td>S. Hansen (SNL)</td>
<td>FAC + SH</td>
<td>Hybrid DLA / DCA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

- Also LTE codes
- Not complete
- Also reviewed select experiments

This is a good reference

H. Scott (LLNL) talk
Some highlights: Indirect and Direct drive capsules

Measure HOT spot mass, MIX mass in Indirect Drive capsule

Measure Te and ne in Direct drive, Ar-doped-D₂ plastic capsules

B. Hammel (LLNL) talk
S. Regan (LLE) talk (original analysis)

R. Mancini (U Nevada, Reno) talk

Fit line intensities and widths of argon β (1-3) and γ (1-4) lines

- Instrumental broadening included, FWHM=9eV
- Each spectrum is representative of Δt=50ps
- Steady state approximation good for N_e > 1x10²² cm⁻³
- ρ [g/cm³] = 3.24xN_e [10²⁴ cm⁻³]
- Changes in plasma T_e and N_e conditions are reflected in characteristic changes in the argon tracer spectra
Some highlights: EXAFS (Extended Absorption Fine Structure) probes local electronic structure in solids

X-ray photon (energy $E_{ph} > E_{K_edge}$)
- excites core electron to continuum
- k vector of electron wave:
 \[\frac{h^2}{2m} \frac{k^2_{\text{electron}}}{2m} = E_{ph} - E_{K_edge} \]
- Phase is $k_{\text{electron}}R$

Interference of electron wave with reflections from neighboring atoms gives structure factor:

\[\chi(k) = \sum_j \frac{S_j^2 N_j f_j(k)}{k R_j^2} \sin(2k R_j + 2\phi_j) e^{-k^2 \sigma_j^2} e^{-2R_j/\lambda(k)} \]

Disorder (Temperature) (faster decay of modulations)

Local structure

B. Yaakobi (LLE) talk
F. Coppari (LLNL) talk
Yaakobi et al developed EXAFS platform at OMEGA to probe local structure in warm, dense matter

Raw EXAFS film image of unshocked Ti

Yaakobi (LLE) talk

Analyzed EXAFS data for ramp-compressed Fe

• Clear signature for the bcc-hcp (close-packed) transition
 Ping, PRL 111, 065501 (2013)

Similar EXAFS platform will be developed at NIF

Platform will be extended to NIF to study ramp-compressed mid to high Z materials
Some highlights: Measuring Te in MagLIF implosions and NIF hohlraums

MagLIF: Te is measured from continuum using time-integrated spectrometer

CRITRs: axially and radially resolved, time-integrated spectrometers (7-50 keV)

NIF Hohlraum: Te vs time is measured from line emission of dopants in a Mn/Co DOT

P. Knapp (SNL) talk

M. Barrios (LLNL) talk
The Format: what worked and what didn’t

• People enthusiastic about a focused meeting

• People didn’t like the idea of parallel sessions

• Configuration of meeting worked
 • LLNL LOFT computer worked well for US citizens and Foreign Nationals
 • WEBEX worked (10-15 people joined; LLE, Weizmann presented via Webex)

• Many people said they learned a lot, new collaborations formed, old ones strengthened (ex: LLNL-Weizmann to look at capsule physics)

• Not enough discussion – need more discussion throughout day rather than just at end
 • contradicts desire for single (not parallel) sessions

• Discussion session format should be improved
 • Plan them better —>
 • agree beforehand to definite questions and goals
 • talks associated with discussions should educate

Community is ready for more focused discussions on fewer topics
Discussion Day 1: Stagnation Spectroscopy

• Stagnating plasmas occur in Indirect Drive, MagLIF, Direct Drive
 • At workshop, did not discuss stagnation in DD or MagLIF
 • In future, more discussion on MagLIF, DD

• Spectroscopy of Hot Spot in Indirect Drive
 • Cannot dope DT
 • dopants freeze out onto ablator at higher temperature than needed to freeze DT
 • Plan: measure electron temperature (Te) from the DT free-free continuum
 • Alternative capsule design: Use foam layer instead of DT ice
 • Use liquid DT in foam + dopant (Kr)?
 OR
 • Dope foam with Cu + liquid DT
 • Foams require development

• Surrogate capsules (symcaps) CAN be doped with Kr as no DT ice layer
 • We can benchmark our DT measurements
 • We can measure electron density (ne) and Te

A point design to use spectroscopy to measure ne, Te in symcap is being developed
A resolution of 5 eV at the Kr He-β line of 15.5 keV is sufficient to measure ne and Te

Signal level for Symcap
- Te = 2.5 to 3 keV
- Ne = 1 to 5 e24
- Burnwidth: 150-200 ps

To estimate signal:
- Te = 3 keV
- Ne = 2. e24
- Kr: 1 Kr atom in 10^4 D-He3
- Time resolution = 30 ps
- Size: 50 µm diameter

Resolution of 5 eV or E/ΔE = 3000
- This does not include other charge states

Further modeling of Kr spectra is needed
- PPPL is designing a Kr He-β spectrometer to mount to a streak camera (K. Hill talk)
 - Cylindrical crystal (von Hamos)
 - Later: conical
 - Conical with elliptical profile?
 - Easily modified to look at lines from other nearby ions (for foam-doped DTs)

The plan is to use a symcap to benchmark the Te from continua with Te from line spectra
Stagnation spectroscopy: Measuring T_{ion} is complicated by hydrodynamic motion (velocity)

IF can dope foam with Cu in DT capsule

Line width is Doppler Broadened by ion temperature AND ion velocity

Lyδ, Lyε: Stark dominated by ionic fields so sensitive to T_{ion}

Neon in WIS Z pinch

Could a “standard candle” platform be developed to measure T_{ion} from neutrons and spectroscopy? Can we figure out how to separate temperature from velocity?
Discussion Day 2: Focused expts on single physics issues needed to benchmark physics in new HED regimes

- Lineshapes to measure density \((10^{22}-10^{25} \text{ cm}^{-3})\)
 - electron broadening model
 - good (to > 20%??) for beta lines in He and H-like ions
 - predicts half the measured width in Li-like and Be-like isolated lines
 - ion broadening (important in alpha lines) how important? How well understood?
 - Suggest new expts: Orion compare H, He like to Li, Be like; X-ray TS???
 - NIF (OMEGA?) Benchmark line broadening model for density by measuring
 - Line width • Expansion of target

- Continuum lowering, IPD– need to do scaling experiments, simple Be, x-ray TS?
 - high T, high density (Orion) to low T, high density (LCLS)
 - different in doped vs undoped; impt for NIF capsule expts?

- NLTE plasmas:
 - Emissivity • Optical Depth effects • \(T_e\) from line ratios

Other issues:
 - Effect of excited state populations on: • LTE opacity • Lines shapes
 - Configuration Interaction • Two photon processes

Basic experiments (rather than integrated ones) are needed to benchmark atomic physics
Future: Spectroscopy diagnostics needed - Z

- Time resolved spectra is needed for Te
 - now use spherical focusing xstals to get enough signal
 - crystals are destroyed on every shot
 - Gated, single of sight capability (such as hCMOS + pulse dilation) in FY19-20

- Need focused effort to measure Tion–
 - NTOFs (scintillators and PMTs) need to be closer to diagnose lowest MagLIF shots
 - Spectroscopic:
 - How to deconvolve flows from temperature?
 - Which lines are best

Universal need for:
- Gated, SLOS imagers
- Tion decoupled from hydro (but parameters, timescale, energy range, may differ)
Future: Time gated, high dynamic range detectors are needed for spectroscopy at NIF

Opacity Platform at NIF:
- Point Backlighter (capsule)
- Spectrometer + Image Plate

EXAFS and Opacity Platforms:
- short duration capsule Point Backlighter
- Spectrometer + Image Plate
 - High dynamic range
 - Excellent resolution
 - TIME integrated so collect background
 - X-ray drive
 - Self-emission from target
 - Shot cycle time

BOTH platforms benefit from high dynamic range, good resolution, gated detector

Gated detector that can be placed at any orientation can revolutionize spectroscopy
Future: spectroscopy Platforms being developed at NIF

- High density, high T (Stagnation)
 - DIM-based He-beta spectrometer (Te and ne) onto DISC (streak camera)
 - von Hamos • conical • ?conical with elliptical cross section

- Materials studies in High density, Low T (warm dense matter)
 - EXAFS spectrometer (also snout in a DIM) • ? High resolution XANES ?

- Opacity: • Spectrometer designed by P. Ross (NSTec), R. Heeter (LLNL)
 - Based on SNL design • Spectrometer on framing camera for density

- DOT (Te in hohlraums)
 - ?new spectrometer for ne? • do we need ΔZ=3?
 - ? Time-resolved imaging spectrometer looking in from side?

- new Au M band spectrometer: VIRGIL (built J. Weaver (NRL)) → add time resolution

- Te-Tion new platform using Ar dopant to measure Te, ne, Tion
What do we have in common?

We are a diverse group (source size, timescales, absolute intensities, debris issues…)

BUT we can agree on three things

1. Need for high dynamic range, high resolution gated detector (Gated C-MOS)
2. Need for focused experiments
3. Importance of Calibration

Should a National Diagnostics Plan for Spectroscopy be Calibration?
Should a National Diagnostic Plan for Spectroscopy be calibrations?

- Very expensive to calibrate (what standards do we need?)
 - relative sensitivity over energy range of interest more important than absolute
 - go to high resolution, satellite to main/satellite ratios
 - avoids relative calibration issue
 - how good are the codes?

- Pool resources and understanding
 - Ex: NSTec (M. Haugh) and SNL (G. Loisel) (M. Haugh (NSTech) talk)
 - understand crystal rocking curves:
 - radius of curvature
 - x-ray energy
 - material
 - thickness
 - CEA is also worrying about calibrations for LMJ (C. Reverdin (CEA) talk)

- NIST has calibration facilities and standards (J. Seely, (ARTEP) talk)
 - Can we calibrate there? Develop secondary standards?

- Calibration facilities have been lost
 - every spectrometer that went “down hole” was calibrated locally
 - should we selectively rebuild?
 - Train young spectroscopists with “hands-on” experience?
Summary

- Workshop had 90 participants + 15 joined remotely; 28 talks
 - Built a community
 - Viewgraphs will be available to public (25 out of 28):
 - internal NIF WIKI (now)
 - NIF User Website (soon)

- New collaborations were formed (LLNL-Weizmann) and old ones strengthened

- APS-DPP is next month
 - Working lunch on ideas for focused experiments?
 - line widths
 - excited state populations

- HTPD is next June:
 - "mini symposium" on calibrations?

- Sometime next year – Stagnation (Indirect drive, direct drive, MagLIF)
 - How to measure “Tion” using spectroscopy