Time Resolved T_e from X-ray Streak Camera Measurements at the NIF

National ICF Diagnostics Working Group Meeting - October 6 - 8, 2015

Shahab Khan Prav Patel, Niko Izumi, Tammy Ma, Charlie Jarrott

LLNL-PRES-677825 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Outline

- X-ray Streak Cameras on NIF: SPIDER & DISC
 This talk will show T_e using SPIDER; DISC will need to be adapted for T_e
- Method of inferring T_e using a hot spot model & filters
- T_e results using SPIDER from recent DT shots on NIF
- Opacity of fuel, ablator & plasma and uncertainty in filter thickness causes problems in calculating T_e
- Continuum Method of inferring T_e
- Future plan: Using DISC for inferring T_e using the Continuum

The two X-ray Streak Cameras on the NIF, SPIDER¹ & DISC², are utilized differently

SPIDER is a fixed diagnostic that primarily measures bang time and burn widths from implosions, DISC is a DIM instrument used for 1D Radiography experiments and spectroscopy with NXS³

SPIDER is mostly a fixed diagnostic, whereas DISC can vary its recording parameters

- Both SPIDER and DISC use an identical streak tube design
- Calibrated sweep windows: 3, 5, 10, 20 ns
- SPIDER temporal slit: 150 μ m \rightarrow 13 ps temporal resolution
- SPIDER photocathode: 1 μm CsI
- DISC temporal slit: 100 μm 500 μm
- DISC photocathodes: 0.15, 0.2, 1 μm CsI & 30 nm Au

SPIDER uses a fixed slit, photocathode and standoff distance while DISC can change these as well as affix a snout for 1D imaging, spectroscopy, etc.; However, it must occupy a DIM

SPIDER uses sets of four filters as Ross pairs & to infer $\rm T_e$

$\rm T_e$ is inferred by comparing the measured signal to simulated signals using a model

Generalized Hot Spot Emission Model

Hot spot model using fits to DCA* 100 Gbar tables (Patel):

 $f \downarrow H = 2.8 / A \downarrow v \uparrow 2 Z \downarrow H \uparrow 2 \times 5.04E22 e \uparrow -hv/kTe 1/(hv) \uparrow 0.39 1/(kTe) \uparrow 0.15$

Bound-Free Absorption (Atzeni, Patel):

Absorption ~ $e^{-(Emfp/hv)}$ 3

 $Emfp \sim (\rho L) \uparrow 1/3$ is equivalent to the photon energy corresponding to a single mean free path through the shell

*Detailed Configuration Accounting, Opacity model in HYDRA

Absorption becomes insignificant above 20keV

T_e and Absorption are simultaneously solved by minimizing the χ 12 difference from measured signal

- Integrate the simulated signal over all energy for each filter
- Scan over a range of T_e and E_{mfp} until the squared difference between measured and simulated signal is minimized
- This analysis often results in no absorption

Least squares fit of T_e and E_{mfp} comparing measured signal to model is found for each time step

In this example, calculated $\rm T_e$ is close to $\rm T_{ion}$ measurement from N-TOF's of 5.3 keV

Calculated zero optical depth; Gaussian fit of signal produces smooth T_e evolution

This HDC DT shot produced two x-ray peaks, the 1st from the core and the 2nd from the shell

It is expected that the 2nd hump have a much lower temperature, since the carbon emission occurs in the colder shell region

However, the analysis returns a low T_e throughout the emission and a jump in the optical depth

Fixing optical depth at 0, the calculated $\rm T_e$ is within range of $\rm T_{ion}$ and evolves as expected

Systematic issue: (1) Opacity model may not capture HDC/NVH well, (2) filter transmission not as assumed

Opacity of fuel, ablator & plasma and uncertainty in filter thickness causes problems

Using thick filters that would sample the continuum region of the hot spot model would eliminate the reliance in opacity models and drastically reduce uncertainty in filter thickness

Continuum model requires two thick filters to solve for T_e; add'l filters for Opacity or Ross pairs

Titanium filters, 400 & 600 µm thickness are one choice that would focus on Continuum slope

Simulating the SPIDER signal through thick Ti gives low signal

SPIDER Signal through thick filters would be close to detector noise: unreliable T_e calculations

DISC would be better for inferring T_e using the continuum slope method

- DISC on a DIM can get ~7X closer to TCC for up to 50X more solid angle than SPIDER
- In order to optimize dynamic range of the streak camera with the other thinner filters, 1% Open Area ratio Gold Mesh (20 micron thick) would be used to reduce signal on thinner filters
- Currently, DISC can't operate in high neutron flux not only due to CCD, but also because the instrument contains components with EEPROM* and micro-controllers

*Electrically Erasable Programmable Read-Only Memory

NIF may build a DISC usable in a high neutron flux similar to the HGXD's

Simulated DISC signal through thick filters would give exceptional S/N

This signal level would theoretically result in good T_e calculations; Possible to use even thicker Ti

Summary

- T_e can be inferred by performing a least squares fit of x-ray signal through certain filters to signal derived from a generalized hot spot model
- The T_e results using data from SPIDER show reasonable time evolution and good agreement with T_{ion} but unrealistic absorption
- There is uncertainty in the opacity model & filter thicknesses
- The continuum slope method may be better for inferring T_e
- DISC would be ideal to record hard x-rays since it can be placed much closer to TCC and detect optimal signal levels using thick filters

NIF may build a DISC usable in a high neutron flux similar to the HGXD's

Calculated T_e using simulated signal gives similar values to thinner filter results

T_e decreases through emission

Fixing optical depth at 0, the calculated $\rm T_e$ is within range of $\rm T_{ion}$ and evolves as expected

Ge transmission source shows negative Ross pair results even though model shows positive

LLNL-PRES-677825

Analyzed data on another DT symcap shot

DT shot using a 3-shock high foot pulse

Performance: DT T_{ion} ≈ 5.1 keV DT Yield ≈ 6.2e15

High Foot DT, 1.78MJ, 390TW, DU nominal hohl, 1.6mg/cc He fill, 1xSi, T-1 shell, 0.8K quench, P1 asymmetry imposed ice layer

Calculated peak $\rm T_e$ is close to time-integrated $\rm T_{ion}$ measurement of 5.1 keV

T_e increases then decreases through x-ray emission

Calculated evolution of $\rm T_e$ is very smooth if using a Gaussian fit of the signal

T_e increases then decreases smoothly

