A Framed Kirkpatrick-Baez X-Ray Microscope on OMEGA (KBFRAMED)

16-image x-ray optical assembly

Project Team				
Principal Investigator	F. J. Marshall			
Instrument Specialist	R. Bahr			
Experimental Operations	D. Neyland			
Mechanical Engineering	D. Guy/M. Shoup			
Controls Engineering	J. Konzel/V. Kobilansky/S. Ingraham			
System Engineering/PM	R.B. Brannon			

Time-resolved x-ray imaging of cryogenic target-core emission provides improved estimates of bang time, burnwidth, and peak core pressure

- Cryogenic DT target-implosion cores are imaged on OMEGA by a combination of a high-speed framing camera coupled to a pinhole array and a 16-image framed x-ray microscope (KBFRAMED)
- The time history of the core x-ray emission determined by the high-speed framing-camera pinhole array gives absolute values of the bang time and burnwidth (with ~5ps accuracy)
- The core pressure is inferred from the measured core size, ion temperature, neutron yield, and burnwidth

KBFRAMED is a 16-channel Kirkpatrick–Baez (KB) x-ray microscope that provides time-resolved images of the core around stagnation

F. J. Marshall, J. A. Oertel, and P. J. Walsh, Rev. Sci. Instrum. 75, 4045 (2004).

Mirror repositioning is required to make compact KB mirrors compatible with the four-strip framing camera

For *M* = 12

Mirror	ϕ	r	$\Delta \theta_{pitch}$	$\Delta \Theta_{roll}$
pair	(°)	(mm)	(°)	(°)
router	45	4.27	0.417	0
<i>r</i> _{middle}	±22.5	4.63	0.481	0
r _{inner}	0	5.40	0.724	0.059

Positions accurate to 10 μ m Tilts accurate to 10 arcsec

F. J. Marshall, Rev. Sci. Instrum. <u>83</u>, 10E518 (2012).

Assembly and testing of KBFRAMED x-ray optic was accomplished in the LLE x-ray laboratory

Final assembly

Three-axis base positioner accuracy: x, y: 2.54 μ m φ : 0.01°

Six-axis mirror positioner accuracy: x: 2.54 μ m y, z: 1 μ m roll, pitch, yaw: 2.3 arcsec

The KBFRAMED x-ray optic consists of 16 mirror pairs with images aligned to a high-speed framing camera

E24419

OMEGA Diagnostics

KBFRAMED optic magnification and framed resolution have been measured using an x-ray backlit grid on OMEGA

 M = 12.0 within 1% Resolution (FWHM* of the PSF**) pprox 6 μ m varies from image to image

*FWHM: full width at half maximum **PSF: point spread function

The KBFRAMED fixed port installation allows the framingcamera electronics and film back to be operated in air

KBFRAMED records an image ($\Delta t = 30 \text{ ps}$) of the stagnating core every ~15 ps in the 4- to 8-keV photon-energy range

The detailed cryogenic core hot-spot evolution is seen every ~15 ps with KBFRAMED

 100×100 - μ m image regions

Relative x-ray intensity 0 Max

Image-to-image timing is precisley determined from position and the use of measured cables $(\pm 2 \text{ ps})$.

E24420

UR 🔌

The cryogenic-target implosion, hot-spot size is determined from an elliptical super-Gaussian fit

OMEGA shot 77064 KBFRAMED core image near peak compression Difference Image Super-Gaussian fit $I = I_0 \times \exp\left[-\frac{(x - x_c)^2}{a^2} - \frac{(y - y_c)^2}{b^2}\right]^{n/2}$ $I^* = I \otimes \mathsf{PSF}(\mathbf{x}, \mathbf{y})$ $R_{1/e} = \sqrt{ab}$ Lineout indicated $200 \times 200 \ \mu m$ regions $R_{17} = (1.77)^{1/n} \times R_{1/e}$ by dotted line Image (black) and fit (red) 0.8 (arbitrary units) Fit is to super-Gaussian 0.6 Intensity Convolved with PSF (I^*) 0.4 • For KBFRAMED: PSF \approx 6 μ m 0.2 **FWHM Gaussian** 0.0 -0.2 50 100 150 Ω Position (μ m)

The pinhole array framing-camera images determine the absolute x-ray bang time and burnwidth

The hot-spot pressure and volume are inferred from the neutron yield, burnwidth, ion temperature, and core size

$$\langle P \rangle^* = \sqrt{\frac{Y_n/10^{16}}{\xi(T)V_{hs}\tau}}, \text{ where } \xi(T) \equiv \frac{1}{V_{hs}} \int V_{hs} \frac{\langle \sigma \nu \rangle}{T^2} dV \text{ and } V_{hs} \approx \frac{4\pi}{3} R_{17\%}^3$$

*C. Cerjan, P. T. Springer, and S. M. Sepke, Phys. Plasmas <u>20</u>, 056319 (2013); R. Betti *et al.*, Phys. Plasmas <u>17</u>, 058102 (2010).

Time-resolved x-ray imaging of cryogenic target-core emission provides improved estimates of bang time, burnwidth, and peak core pressure

- Cryogenic DT target-implosion cores are imaged on OMEGA by a combination of a high-speed framing camera coupled to a pinhole array and a 16-image framed x-ray microscope (KBFRAMED)
- The time history of the core x-ray emission determined by the high-speed framing-camera pinhole array gives absolute values of the bang time and burnwidth (with ~5ps accuracy)
- The core pressure is inferred from the measured core size, ion temperature, neutron yield, and burnwidth

All mirror components are the same, simplifying manufacture and assembly

The off-axis resolution of a KB microscope is limited by spherical aberration and diffraction

 $\frac{1}{p} + \frac{1}{q} = \frac{2}{B \sin i}$ Single mirror focus*: $\delta_{ab} = \left(\frac{3M+7}{2M+2}\right) \frac{\left(\Delta t\right)^2}{R} + 2h \frac{\Delta t}{R \sin i}$ **Primary spherical aberration** and obliquity of field**: $\delta_{diff} \approx \frac{\lambda p}{\Delta t \sin i}$ **Diffraction: Total aberration** $\delta = \sqrt{\delta_{diff}^2 + \delta_{ab}^2(h)}$ and diffraction: **KB** mirror R

*P. Kirkpatrick and A. V. Baez, J. Opt. Soc. Am. <u>38</u>, 766 (1948).

**J. F. McGee and J. W. Burrows, in *X-Ray Imaging*, edited by R. C. Chase and G. W. Kuswa (SPIE, Bellingham, WA, 1977), Vol. 106, pp. 107-112.

The new KB optic has a best resolution of ~5 μ m with better than 10 μ m over a 1-mm field of view

UR 🔌

Ray tracing indicates that curvature variation will have a small effect on the spatial resolution

UR LLE

The measured reflectivity of an individual Ir-coated KB mirror pair is close to the ideal predicted reflectivity

