Goals and results of the SNL crystal calibration work

Goals

- Measure accurate rocking curve of bent crystals to help the understanding of measurements taken on Z (opacity, photoionized plasmas, non-thermal emission, liner spectra...)
 e.g The iron opacity measurements on Z require integrated reflectivity, crystal resolution, and 2nd to 1st order reflectivity ratio (2nd order correction below 950eV)
- 2) Evaluating absolute source intensities, instrumental broadening, plasma line-widths.
- 3) Develop intuition and a path to model crystal performance that could be used in a larger parameter space (various crystal curvatures, geometries, orders, photon energy...)

Results

- 1) We accurately measured integrated reflectivities for a set of KAP crystal curvatures (flat, 2,4, 6 and 9in) and diffraction orders (1st, 2nd and 3rd)
- 2) Integrated reflectivities show good agreement with XOP multilamellar model with a set of Debye-Waller factors (temperature factors) depending on crystal curvature and order of diffraction. It is possible that they could also depend on photon energy but the present data is too limited to be conclusive.
- 4) Width for 2nd and 3rd order agree relatively well with XOP multilamellar model
- 5) Widths in 1st order are systematically measured higher than any calculation due to extra instrumental broadenings, this might be solved through deconvolution.
- 6) Width and spectral shape in 1st order are measured with a conventional x-ray source
- 7) Crystal efficiencies were measured to high accuracy using NIST calibrated KERMA source

Crystal spectrometric properties are required to unfold instrumental effects in HEDP experiments

Crystal spectrometric properties are:

- 1) Crystal integrated reflectivity (R_{int})
- 2) Crystal resolution and spectral shape

These are readily obtained through the measurement of crystal *rocking curve*, nevertheless either one quantity is more readily measurable accurately

Outline of this presentation

- 1) Synchrotron beamline measurements $\rightarrow R_{int}$ and some resolution
- 2) Uncalibrated conventional x-ray source \rightarrow resolution and spectral shape
- 3) Calibrated conventional x-ray source $\rightarrow R_{int}$

1) Using the ALS LBNL beamline to measure crystal rocking curve and probe the effect of bending in KAP

Rocking curve calibrations principle and requirements

Principle of measurement

- 1) Select photon energy (double-monochromator)
- 2) measure I_0 with the crystal out of the way

3) rock the crystal (ϑ) and detector (2 ϑ) and measure reflected counts

Requirements

Integrated reflectivity

- 1) No significant higher order contamination in the counts
- 2) Rock the crystal about a fixed point (alignments crystal, beam, stages)
- 3) High x-ray flux for reasonable S/N and fast data collection

Shape and width \rightarrow limit systematic broadenings introduced by other effects

- 1) beam intrinsic spectral width small (high spectral purity)
- 2) beam size small
- 3) bending effect small or understood
- 4) keep misalignments small

Rocking curve calibrations principle and requirements

Principle of measurement

- 1) Select photon energy (double-monochromator)
- 2) measure I_0 with the crystal out of the way

3) rock the crystal (ϑ) and detector (2 ϑ) and measure reflected counts

Requirements

Integrated reflectivity (ALS+ detector) No significant higher order contamination in the counts 1) 2) Rock the crystal about a fixed point (alignments crystal, beam, stages) (precision stage) 3) High x-ray flux for reasonable S/N and fast data collection (ALS) Shape and width \rightarrow limit systematic broadenings introduced by other effects 1) beam intrinsic spectral width small (high spectral purity) //// (ALS beamline) beam size small 2) (pinhole and collimated beamline bending effect small or understood 3) need to be evaluated keep misalignments small 4)

Predicted effect of bending on integrated reflectivities

Sandia National Laboratories

Predicted effect of bending on FWHM

The ALS beamline 9.3.1 has high photon flux in 2.3-5.keV

Source characteristics Bend magnet Energy range 2.3-5.2 keV Monochromator Double Si(111) crystal Measured flux (1.9 GeV, 300 mA) 10¹¹ photons/s in 30 bunches mode. Resolving power (E/ Δ E) 3000-7200 Beam size Adjustable with 2nd mirror Focused: 1.0 mm x 0.7 mm (~0.5 mm square at 2800 eV) Unfocused: 10 mm x 10 mm or larger

ALS beamline 9.3.1 experimental setup

Ring electron current 35.2mA ± 0.3mA, high stability, ~24/7

Monochromator

2x Si(111) crystals , energy range 2300eV-5200eV , resolving power 3500-7000

Imager

x-ray beam imaged (4mrad width, ½ mrad height) at the crystal location

imager = 2 Ni toroidal mirrors (1m long each), Mag=1

grazing 11mrad incidence (rejection at > ~5.4keV)

Calibration end-station

pinhole mount

Crystal stages: **1** rotation (Bragg angle), resolution=0.001°, z translation Detector stage: **20** rotation, res=0.005° Pinhole mount : vertical translation Pinhole sizes : 5.0, 3.0 or 1.2µm

Crystals: Saint Gobain crystal flat, 2, 4, 6 and 9in radius of curvature, all new

Detection and statistics

The Amptek SDD (Silicon Drifted Detector) is an energy **dispersive** detector. Can count up to 1e6 cts/s, linearly in 1-50keV.

Simultaneous events appear as a 'second order' signal, such that 2 counts add up together and appear as a 2x energy single count.

Rocking curves RC are obtained by dividing the reflected counts to the direct beam counts number at a given Bragg angle.

Rocking curve $1-\sigma$ uncertainty is inferred through Poisson statistics of counts C:

$$RC = \frac{C}{C_0} \qquad \sigma = \frac{C}{C_0} \sqrt{\frac{1}{C} + \frac{1}{C_0}}$$

with C₀ the non-reflected (direct beam) counts, assuming detector dominated statistics.

integration time 3-30s / angle

Data can be collected 24/7

We collected ~200 rocking curves, each energy/crystal set measurement is

doubled - 184 processed here

Date	Crystal radius (in)	Photon energy (eV)	Bragg angle (deg)	pinhole size (µm)	Order of diffraction	time stamp1	time stamp2	time stamp3	Rint1 (µrad)	Rint2 (µrad)	Rint3 (µrad)	FWHM1 (µrad)	FWHM2 (µrad)	FWHM3 (µrad)	Rp1 (%)	Rp2 (%)	Rp3 (%)
Tuesday April																	
7th	4	4510.84	5.92	5	1				64.6	62.2		601	597				
	4	4000.00	6.68	5	1	12:29	12:48		55.4	55.7		570	569			6.5	
	4	3633.40	7.36	5	1	19:25	19:39		40.3	42.7		601.5	599				
	4	3608.40	7.41	5	1	14:47	14:59		14.1	14.4		696	667				
	4	3583.40	7.47	5	1	20:10	20:29		110	113		786	806				
	4	3558.40	7.52	5	1	15:29	15:45 16:08 (nonuniforn		111	117		809	801				
		2024 21	0.00		4	17.00	grid)		120	126		674	670				
	4	2293.16	11.71	5	1	18:23	18:39		113.8	113		496.9	491				
				-	-												
Wednesday April 8th	4	2293.16	11.71	5	1	14:04	x		100	x		545	x				
	4	2293.16	11.71	3	1	15:32	15:07		66	26		846	957				
	4	2293.16	11.71	1	1	16:10	x		94	x		1193	x		5.70		
	4	3558.40	7.52	3	1	21:31	X 10-08		102	X		918	X 1330		7.2		
	4	4510.84	5.92	3	1	21:07	13.08 X		49	X		1215	X		2.99		
	4	4510.84	5.92	1	1	20:00	20:22		51	50		1477	1447		2.93	2.6	
	4	2293.16	23.96	5	2	22:46	22:59		8.8	8.6		293	292		1.9	1.9	
Thursday	4	2984.31	18.18	5	2	23:31	23:45		11.6	12		393	398.2		1.98	1.97	
April 9th	6	4510.84	5.92	5	1	21:43	22:08		71	77		962	936		6.2	6	
	6	4000.00	6.68	5	1	21:14	21:27		62.5	61.2		826	856		5.6	5.1	
	6	3633.40	7.36	5	1	20:94	20:55	2028	43.6	43.0	39.11	440	400	401	6.25	5.8	6.3
	6	3608.40	7.41	5	1	19:40	19:53		14.87	14.9		410	410		2.3	2.4	
	6	3583.40	7.47	5	1	19:05	19:23		110	109		511	510		14	14.25	
	6	3558.40	7.52	5	1	18:20	18:35	1845	126	124	121	517	503	502	16.4	16.65	16.4
	6	2984.31	11.71	5	1	10:05	10:49	2223.2241	95	96	89.94	382	382	353.375	19.70	19.8	16.16.6
	6	2293.16	23.96	5	2	23:19	23:37		8.38	8.55		268	245		2.7	2.4	
	6	2293.16	37.52	5	3												
Friday April 10th	2	4510.84	5.92	5	1	18:23	18:38		61	78		×	2659		2.2	2.1	
	2	4000.00	6.68	5	1	17:48	18:00		61	64		2219	2271		2.2	2.2	
	2	3658.40	7.31	5	1	16:18	16:33		47	43		1137	1197		3	2.6	
	2	3633.40	7.36	5	1	15:52	16:03		38	39		1105	1107		2.4	2.5	
	2	3508.40	7.41	5	1	15:22	15:35	1438	14.2	14.1	111	1193	1153	1538	0.8	0.9	5.7
	2	3558.40	7.52	5	1	13:22	13:41	2450	133	127		1453	1454	2000	6.7	6.5	2.1
	2	2984.31	8.98	5	1	10:17	10:54		162	160		1089	1082		10	10.5	
	2	2293.16	11.71	5	1	8:13	9:07	9:30, 19:03, 19:20	113	109	110, 117, 136	965	959	956, 935, 935	9	8.5	9.2, 9.5, 10.2
	2	2293.16	23.96	5	2	19:53	20:15		8.1	7.52		567	552		1.1	1.0	
	2	2293.16	11.71	3	1	0:51	1:03		122	125		1730	1702		4.9	5	
	2	3558.40	7.52	3	1	1:58	2:11		120	125		2447.8	2331		3.8	4	
Saturday April 11th	2	2293.16	11.71	5 - closer	1	9:03	9:26	20:43	145	139	121	556	549	549	16.8	16.8	16.8
	2	2984.31	8.98	5 - closer 5 - closer	1	14:07	14:16	15-24	152	152	112	761	761	1000	15	15	85
	2	4510.84	5.92	5 - closer	1	16:06	16:35	16:52	80	74	68	962	919	969	6.1	5.9	5.6
	2	2293.16	11.71	3 - closer	1	18:38	18:53		107	100		902	920		9.6	8.5	
	2	2984.31	8.98	3 - closer	1	19:24	19:33		81	126		805	969		8.55	11	
	2	3583.40	7.47	3 - closer	1	19:49	19:57		99.8	101		1233	1195		7	7.1	
	2	2293.16	23.96	5 - closer	2	23:00	23:12		8	8.1		365	357		1.5	1.6	
	2	2293.16	37.52	5 - closer	3	20:53	21:08		0.11	0.094		316	300.3		0.0223	0.023	
C	2	3608.4	14.95	5 - closer	2	23:37	23:50		30	34.2		616	560	1	3.7	4.5	
12th	9	2293.16	11.71	5 - closer	1	11:31	11:48	12:03	100.3/96	99.2/94.1	95.4/88.3	189/229.5	192/229.8	194.6/229.8	33.1	33.1	33
	9	2984.31	8.98	5 - closer	1	13:36:00 PM	13:51	14:01	92.83	89	86.6	193.7	229.8	229.8	31.1	31.8	31
	9	3583.40	7.47	5 - closer	1	18:23	18:35	18:46	84.6	78.9	79.9	246.3	254.7	247.9/229.9	22.7	20.6	22.6
	9	3608.40	7.41	5 - closer	1	19:38	19:54	20:02	13.3	12.8	12.6	229.8	262.8	261.3	3.9	3.65	3.74
	9	3633.40	7.36	5 - closer	1	20:20	20:50	21:00	31.2	31.9	33.1	268.8	336.6	330.8	8.23	6.78	7.31
	9	3658.40	7.31	5 - closer	1	21:26	21:35		35.6	34.9		319.3	311.6		8.39	8.32	
	9	4000.00	5.92	5 - closer	1	22:03	23:15		42.1	41.4		367.8	371.3		9.85	9.0	
	9	2293.16	11.71	5-closer	1	23:51			103.2			204.5			32.8		
	9	2293.16	23.96	5 - closer	2	0:26	0:43		8.39	8.28		156.6	161.6		3.43	3.37	
1	9	3608.4	14.95	5 - closer	2	1:47	1:57	2:14	33.05	35.3	36.6	225.4	256.2	253.1	9.86	9.8	10.1

Example of rocking curve (4)

Example of rocking curve (2)

Example of rocking curve (2)

Example of rocking curve (3)

The Voigt fit parameters are compared with XOP model for R_{int} and FWHM

XOP 2.4 Multi-Lamellar model, dynamical theory of diffraction, Zachariasen equations , imperfect mosaic crystal.

- 5 curvatures: flat, 9in, 6in, 4in, 2in crystals
- orders: 1, 2, 3
- polarization: σ, π & none
- temperature factors: 0.8, 0.9, 1.0
- energy grid 500pts [2270 4533] eV

The KAP c lattice parameter was updated in XOP to correct lattice spacing and 013 plane tilt

Integrated Reflectivity 1st order

FLAT – 1st order

Integrated Reflectivity 2nd order

FLAT – 2nd order

Rocking curve FWHM 1st order

FLAT – 1st order

Rocking curve FWHM 2nd order

FLAT – 2nd order

Contributions to rocking curve width

Sandia National Laboratories

- 1) crystal rocking curve
- 2) beam size at crystal (depends on angle of incidence)
- 3) crystal bending
- 4) intrinsic energy width
- 5) misalignments

Width Voigt components:

Contributions to rocking curve width

- 1) crystal rocking curve
- 2) beam size at crystal (depends on angle of incidence)
- 3) crystal bending
- 4) intrinsic energy width
- 5) misalignments

Width Voigt components:

to perform a forward deconvolution

2) Using the un-calibrated Manson source to measure crystal spectral resolution and shape in KAP

The rocking curve shape and width in 1st order can be main and state and s

Methodology

- The detected spectral line (characteristic line) is made of the intrinsic line (at the source) convolved with crystal rocking curve.

-The intrinsic line shape and width is measured with a high resolution setup (here 2nd order measurement)

-The 1st order shape and width are obtained by deconvolution of the 2nd order measurement

KAP 6in - Al Kα in 2nd order

KAP 6in - Al Kα in 1st order

KAP 6in results for Al, Mg and Si K α lines

Element / K α wavelength	2 nd order width (mÅ)	l st order width (mÅ)	Crystal broadening (mÅ)	Crystal I st order resolving power
Si / 7.126 Å	5.87 (a=0.67)	9.72 (<i>a</i> =0.83)	6.24 (<i>a</i> =0.67)	1142±73
AI / 8.34 Å	5.98 (a=0.88)	10.38 (a=0.99)	6.64 (<i>a</i> =0.77)	1256±73
Mg / 9.89 Å	7.03 [13] (a =0.94)	11.81 (a=1.04)	7.47 (a=0.13)	1415±348 [13]

The found crystal profiles are Voigt profiles with RP=1100

NB: the convolution of a Voigt (RP=1100) is similar to a Gaussian (RP=700)

3) Using the NIST absolutely calibrated KERMA facility to measure crystal efficiency in Quartz transmission

Absolute calibration setup @ NIST KERMA facility

100kV tube, W anode

Beam qualities (NS) used for the calibration are international standards with 4% relative uncertainty

End-to-end instrument calibration

The NS resolution should be used to convolve the crystal dispersed spectrum

End-to-end instrument calibration

203 data 0.0010 XOP calc rescaled 778_eff_wave_lo NS30_Seltzer crystal 203-1-1 with a flat 5.9 ratio 0.0008 Source intensity (J/eV/sr) end of 0.0006 crystal **NS30** mount 0.0004 0.0002 crystal mount clipping 0.0000 20 25 30 0.0010 790_eff_wave_lo 99_eff_wave_lo 0.0020 NS40 Seltzer NS60 Seltzer NS60_Seltzer_2nd_orde 0.0008 Source intensity (J/eV/sr) Source intensity (J/eV/sr) 0.0015 1^{st} order/(203) 0.0006 0.0010 **NS40 NS60** 0.0004 0.0005 0.0002 2nd order (406) 0.0000 0.0000 30 40 Photon energy (keV) 20 25 40 30 35 20 50 60 Photon energy (keV)

2nd/1st ratio ~20 is correct

Goals and results of the SNL crystal calibration work

Goals

- Measure accurate rocking curve of bent crystals to help the understanding of measurements taken on Z (opacity, photoionized plasmas, non-thermal emission, liner spectra...)
 e.g The iron opacity measurements on Z require integrated reflectivity, crystal resolution, and 2nd to 1st order reflectivity ratio (2nd order correction below 950eV)
- 2) Evaluating absolute source intensities, instrumental broadening, plasma line-widths.
- 3) Develop intuition and a path to model crystal performance that could be used in a larger parameter space (various crystal curvatures, geometries, orders, photon energy...)

Results

- 1) We accurately measured integrated reflectivities for a set of KAP crystal curvatures (flat, 2,4, 6 and 9in) and diffraction orders (1st, 2nd and 3rd)
- 2) Integrated reflectivities show good agreement with XOP multilamellar model with a set of Debye-Waller factors (temperature factors) depending on crystal curvature and order of diffraction. It is possible that they could also depend on photon energy but the present data is too limited to be conclusive.
- 4) Width for 2nd and 3rd order agree relatively well with XOP multilamellar model
- 5) Widths in 1st order are systematically measured higher than any calculation due to extra instrumental broadenings, this might be solved through deconvolution.
- 6) Width and spectral shape in 1st order are measured with a conventional x-ray source
- 7) Crystal efficiencies were measured to high accuracy using NIST calibrated KERMA source