OMEGA 3dNTOF Project

J. P. Knauer University of Rochester Laboratory for Laser Energetics National ICF Diagnostics Working Group Meeting Los Alamos National Laboratory Los Alamos, NM 6-8 October 2015

UR

3dnToF is a Center-of-Momentum velocity measurement project

- Proof-of-principle demonstrated in FY15
 - Single axis demonstration
 - Timing fiducial and data recorded on single digitizer
- Detector responses measured with x rays
- Asymmetric Drive experiments demonstrated feasibility of measurement
- Multi-layer geometries may extend the dynamic range of CVD detectors

Summary

CVD diamond detectors are located at 5.8 m and 15.8 m from the center of the target chamber

Distance uncertainty of 1 mm Timing uncertainty of 20 ps

Velocity resolution of 9 km/s

CVD detectors are aligned along the same line-of-sight as an existing nToF scintillator 15 m from tcc

Transit times for photons, DT neutrons, and DD neutrons allow for separation of the peaks

Detector - Radiation	Transit time (ns)
3dp2-1 (5.8 m) - photon	19.495
3dp2-1 (5.8 m) – DT neutron	114.078
3dp2-1 (5.8 m) – DD neutron	270.560
3dp2-2 (15.9 m) - photon	52.873
3dp2-2 (15.9 m) – DT neutron	309.383
3dp2-2 (15.9 m) – DD neutron	733.771

DT neutron transit difference between detector locations is 195.306 ns

A timing fiducial and signals from both detectors are recorded by a single digitizer

Timing fiducial uses channel 1 and data from CVD detectors use channels 2 - 4

Dynamic range of data recording increased by using 3 digitizer channels

Three techniques are used to calibrate cable lengths to detectors

- Time-domain-reflectometry
- Data from co-located detectors ۲
- Installed detector x-ray signals •

A functional form for the fiducial is fit to the data to determine $\ensuremath{t_{\text{fidu}}}$

Fiducial model is a sum of 8 Gaussian peaks separated by 548.25 ps convolved with an exponential

X rays were used to characterize the Instrument Response Function (IRF)

X rays were used to characterize the Instrument Response Function (IRF)

Statistical errors are well determined and systematic errors are being quantified

- Statistical errors
 - Error from timing and distance = 11 km/s
 - Error from kT uncertainty of 0.4 keV = 3 km/s
 - Error from peak fit = 10 km/s
 - Total statistical error = 17 km/s
- Systematic errors
 - Minimized by recording a multiplexed signal
 - Cable differences measured
 - IRF shape dominates the unknown part of the systematic error

A series of three asymmetric drive implosions were used to test the "bulk velocity" measurement

- High yield Exploding pusher targets were used
- Drive asymmetry imposed by reducing laser energy on one side of the target
 - Shot 77365 energy reduced on side of target facing detectors

Timing fiducials were aligned to symmetrical drive shot 77361

UR

77356 - energy of beams around P2 reduced 77358 - energy of beams around P11 reduced

Timing fiducials aligned to remove trigger jitter no more than ± 100 ps (1 sample)

CVD diamond detector at 5.7 m shows Doppler shift with illumination perturbation

Temporal shift is larger for the 15.8 m CVD detector

Transit time difference used to measure relative speed along P2 – P11 axis

No Doppler shift is seen when symmetrical illumination is used

If all symmetrical shots are identical, then timing error for transit is $\pm 85 \text{ ps} \sim \pm 22 \text{ km/s}$ (more work to be done on timing error)

CVD diamond detector concepts

- Keep detector diameter constant at 10 mm
- Vary number of layers

Typical 1mm CVD detectors have been built with N type connectors

Multilayer concepts will need a new style mount

Typical high voltage: 750 V

Multilayer concepts will need a new style mount

RÖCHESTER

Multilayer concepts will need a new style mount

Typical high voltage: 375 V

Summary/Conclusions

3dnToF is a Center-of-Momentum velocity measurement project

- Proof-of-principle demonstrated in FY15
 - Single axis demonstration
 - Timing fiducial and data recorded on single digitizer
- Detector responses measured with x rays
- Asymmetric Drive experiments demonstrated feasibility of measurement
- Multi-layer geometries may extend the dynamic range of CVD detectors

