What does a new, better nTOF buy us?

Brian Spears

Dave Munro, John Field, Gary Grim, Joe Kilkenny

Lawrence Livermore National Laboratory

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Improving the nTOFs will drive innovation at NIF

- What does an additional nTOF get us?
 - Capturing Tion variation
 - Choose your line of sight carefully antipodal? Fill a gap?
 - What does it take to see expected Tion anisotropy? 100 eV error bar.
 - North pole
 - Removes systematics in Tion and bulk velocity
 - Gets odd modes
 - Chance at thermal ion temperature
- What do improvements to nTOF measurements or analysis get us?
 - Moments of the peak reveal thermal and fluid state
 - 1st (shift)

- bulk velocity
- 2nd (width) Tion and flow variance
- 3rd (skew)

• 4th (kurtosis)

- correlation of temperature and flow. Is the hot stuff moving fast?
- correlation of temperature variance and flow. Is burn happening over a broad temperature range?

Apparent Tion varies with line of sight AND antipodal Tions are the same Simulation and theory show a

 Fluid velocity variance increases the apparent temperature

$$T_{Brysk} = \left(\frac{m_D + m_T}{k}\right)\sigma_v^2 + T_{thermal}$$

Murphy PoP

- Apparent temperature has an L=2, ellipsoidal distribution
 - · Varies with line of sight
 - Equal on antipodal (opposite) lines of sight (LOS)

Simulation and theory show antipodal temps are identical

An additional nTOF increases the ability to capture differences with line of sight

Detector	T _{Brysk}	
SpecE	3.49	Simulated
SpecA	3.56	detectors caught 55% of
SpecSP	2.96	
NITOF	3.50	
MRS	3.39	FIV

Antipodal temps are identical

- With 4 nTOFs: capture 50 65% of Tion peak-to-valley (PTV)
- Add Spec NP: capture 55 70% (not exactly opposite SP)
- Add still another
 - antipodal specA: stays 55-70% of PTV
 - Collinear E and A: get 75 80 %
 - Larger percentage
 - Less variation (dependence on ellipsoid shape)

Some lines of sight are more valuable than others ... for capturing PTV.

So, is the high foot apparent T_{ion} usually isotropic or not?

- Post shot simulations suggest Tion anisotropy of ~ 300 - 400 eV
- Detectors would typically sample ~ 150-200 eV
- Detectors can measure down to 500 eV anisotropy (PTV)

See M. Gatu Johnson paper

We need neutron spectrometers that can measure 300 eV anisotropy – that's about a 100 eV error

Antipodal nTOF removes systematic errors in analysis

- Apparent temperature should be the same on opposing sides
 - Sources of differences
 - underappreciated physics influences (scattering)
 - instrumental or analysis systematics
- Bulk velocity
 - Equal and opposite on opposing sides
 - Similar sources of differences
- Odd mode DSR
- Can shine light on
 - Tion uncertainty
 - DD and DT Tion differences
 - · DD and DT bulk velocity differences
 - Polar areal density ice caps

At least three effects change the neutron spectral peak location

- Relative kinetic energy of the fusing ions
- Scattering of the neutrons by compressed fuel
 - -scattering into the peak region by fuel
 - -scattering out of the peak region by fuel

NIF

Neutron scattering by dense DT shifts the central peak

Antipodal detectors provide a better measure of drift velocity

- The centroid of the DT peak shifts
 - Mainly due to neutron-weighted bulk flow (rigid translation)
 - Smaller correction due to "Ballabio" effect neutron boost from reactant KE

$$v_{p,i} = v_0 + v_{Ballabio} + v_{drift,i}$$

Constant over LOS

	V ₀ [km/s]	V _{drift} [km/s]	v _{Ballabio} [km/s]
DT	51233.6	100	35
DD	21601.9	100	70

 Differencing opposing lines of sight leaves drift term

$$\frac{v_{p,1} - v_{p,2}}{2} = v_{drift}$$

Need 15-30 km/s precision to measure drift velocity

Antipodal detectors provide a measure of thermal ion temperature – in theory!

- The centroid of the DT peak shifts
 - Mainly due to neutron-weighted bulk flow (rigid translation)
 - Smaller correction due to "Ballabio" effect neutron boost from reactant KE

Alas, some things are harder to do in experiment than in theory

North pole nTOF measures odd modes in cold shell

- DSR in P1 shots has strong odd mode (mode 1)
- Is the north pole as predicted? Is it different from control shots?

North pole nTOF provides a missing diagnosis of DSR asymmetry

UCM#.ppt - Author - Meeting, Date

North pole nTOF could help resolve polar ice cap issues

- DSR in P1 shots has strong odd mode (mode 1)
- Is the north pole as predicted? Is it different from control shots
- Does DSR variation compare well with fNADS, especially pole to pole?

Spectral peak depends on the distribution of neutron production in temperature and velocity space

Simulations have to get a lot right to capture the temperature variation

Stagnation measurements can be much more informative

High convergence NIC capsule view at 10 KeV

(different scales)

N120321 HYDRA hi-resolution simulation with 470M zones by D. Clark and C. Weber

The kurtosis shows hot spot cooling and flow effects.

VIEW PATH

UCM#.ppt - Author - Meeting, Date

16

The kurtosis shows hot spot cooling and flow effects

L=0, 2, 4 in direction \rightarrow antipodes are identical

Kurtosis variation with line of sight is another direct measure of stagnation and stagnation asymmetry – need it to \sim 5% precision

Capturing the spatial variation of spectral signatures requires tradeoffs in instrument number and precision

- Consider a test case
 - 400eV PTV Tion variation
 - 15% skew variation
 - 20% kurtosis variation
- Current suite + SpecNP (50% sampling efficiency)
 - 1st moment peak location to 15-30 km/s, needed on at least 3 LOS
 - 2nd moment sample 200 eV PTV → 100 eV precision
 - 3rd moment sample 7% skew PTV \rightarrow 3% precision
 - 4th moment sample 10% kurtosis PTV \rightarrow 5% precision
- Current suite + SpecNP + collinear EA (75% sampling efficiency)
 - 1st moment peak location to 15-30 km/s, needed on at least 3 LOS
 - 2nd moment sample 300 eV PTV \rightarrow 150 eV precision
 - 3^{rd} moment sample 12% skew PTV \rightarrow 6% precision
 - 4th moment sample 15% kurtosis PTV → 8% precision

Improving the nTOFs will drive innovation at NIF

- What does an additional nTOF get us?
 - Captures peak-to-valley Tion variation

OR

- Removes systematics in Tion and bulk velocity
- Gets odd modes
- Gives a chance at thermal ion temperature
- What do improvements to nTOF measurements or analysis get us?
 - Moments of the peak reveal thermal and fluid state
 - 1st (shift) bulk velocity
 - 2nd (width) Tion and flow variance
 - 3rd (skew) Is the hot stuff moving fast?
 - 4th (kurtosis) Is hot spot burning over a broad range of temperatures?
 - Do the nuclear signatures provide a signature of asymmetry?

Neutron spectral moments and LOS dependence are important clues

burn T-u distribution (3D simulation)

u = fluid velocity component along LOS

burning plasma exceedingly non-uniform, neutrons produced in wide range of T_i and fluid u

shift of spectral peak only tells us mean <u> + shift(<T_i>)

variance of spectral peak only captures <T_i> + Var(u)

skew and kurtosis of spectral peak tell us about T-u correlations and Var(T)

Each D+T (or D+D) reaction makes n with slightly different momentum

Shifted, scaled neutron momentum is best variable for spectrum

$$\omega = \frac{p'}{E_0} - v_0 = v_{\Omega} + \frac{p}{E_0} - v_0 - \frac{v_{\perp}^2}{2v_0^2}v_0 + \frac{v^2 + v_{\perp}^2}{2}v_0 + O(v^3)$$
CM velocity component thermal motion T,
fluid motion u
$$M = m_D + m_T \qquad \left\langle v_{\Omega}^2 \right\rangle_{\text{thermal}} = \frac{T}{M} \equiv \tau \qquad \text{T in units of velocity}^2 \\ 1 \text{ keV} \rightarrow (139 \text{ km/s})^2 \text{ DT} \\ (155 \text{ km/s})^2 \text{ DD} \end{cases}$$

$$\frac{p}{E_0} - v_0 \approx \frac{1}{v_0} \left(\frac{M}{E_0} - 1\right) \frac{K}{M} \equiv \kappa \qquad \text{K in units of velocity} \\ 10 \text{ keV} \rightarrow 14.7 \text{ km/s DT, } 33.1 \text{ km/s DD}$$

For given T, u, and K, can integrate over directions, Maxwellian exactly

fixed K = relative K.E. defers needing to know reaction cross section

$$\frac{dN}{d\Omega dp_n''} \sim \frac{{p_n''}^2}{E_n'' p_n' p_n} \exp\left(-(\gamma - 1)\frac{M + K}{T}\right) \qquad \begin{array}{l} \text{unprimed is CM} \\ \text{`is fluid frame} \\ \text{`is lab frame} \end{array}$$

This spectrum exact Maxwell-Juttner averaged relativistic kinetics Can also integrate momentum moments analytically

Averages over the distribution of K for given T done by expanding in K/K_0 and K/M – this averaging requires reaction cross section

Finally, average over T, u distribution

Use neutron momentum spectrum, scaled to units of velocity

$$\omega = p_n / (m_n + K_0) - v_0$$

scaled and shifted neutron momentum very nearly CM velocity of reacting DT pair

 $4\pi \frac{dN}{d\omega \, d\Omega} \qquad \text{momentum spectrum = number of neutrons per sphere} \\ \text{within } d\omega \text{ of "velocity" } \omega \text{ and within } d\Omega \text{ of direction } \Omega \end{aligned}$

 $u_{\rm o} = {\bf u} \cdot {\bf \Omega}$ fluid velocity component along LOS

$$\overline{\kappa} = \frac{1}{v_0} \left(\frac{m_D + m_T}{m_n + K_0} - 1 \right) \frac{\overline{K}(T)}{m_D + m_T} \approx \overline{\omega}(T)$$

"velocity" for mean DT K.E.(T) ("Ballabio shift")

Each spectral moment constrains moments of (T,u) burn distribution

$$\begin{split} f(T,\mathbf{u})dTd^{3}\mathbf{u} & \text{fraction of neutrons produced in plasma at} \\ \text{temperature T within dT, velocity u within du} \\ \langle XY \rangle &= \int XY \ f(T,\mathbf{u})dTd^{3}\mathbf{u} & \text{burn average of quantity XY} \\ \int d\omega \ 4\pi \frac{dN}{d\omega \ d\Omega} &= 1 + \frac{2}{v_{0}} \langle u_{\Omega} \rangle + \frac{1 + v_{0}^{2}}{2v_{0}^{2}} \left(3 \langle u_{\Omega}^{2} \rangle - \langle u^{2} \rangle \right) + \dots \quad \text{LOS dependence} \\ of \ yield \\ \langle \omega^{1} \rangle &= \langle u_{\Omega} \rangle + \langle \kappa \rangle + (1 + \frac{1}{2}v_{0}^{2}) \langle \tau \rangle / v_{0} + \dots \quad \text{centroid of spectrum} \\ \langle \omega^{2} \rangle &= \langle \tau \rangle + \langle u_{\Omega}^{2} \rangle + 2 \langle \kappa u_{\Omega} \rangle + \dots \quad \text{(showing only} \\ argest \ contributions) \\ \langle \omega^{4} \rangle &= 3 \langle \tau^{2} \rangle + 6 \langle \tau u_{\Omega}^{2} \rangle + \langle u_{\Omega}^{4} \rangle + \dots \end{split}$$

27

Compute cumulants to see deviation from Gaussian spectrum

$$\operatorname{Cov}(X,Y) = \langle (X - \langle X \rangle)(Y - \langle Y \rangle) \rangle = \langle XY \rangle - \langle X \rangle \langle Y \rangle$$

$$\operatorname{Var}(X) = \operatorname{Cov}(X,X) = \langle X^{2} \rangle - \langle X \rangle^{2}$$

$$\operatorname{Cov}(X,Y,Z,...) = \langle (X - \langle X \rangle)(Y - \langle Y \rangle)(Z - \langle Z \rangle)... \rangle$$

$$\operatorname{Skew}(X) = \operatorname{Cov}(X,X,X) / \operatorname{Var}(X)^{3/2}$$

$$\operatorname{Skew}(X) = \operatorname{Cov}(X,X,X,X) / \operatorname{Var}(X)^{2} - 3$$

$$\operatorname{distribution}$$

$$\operatorname{Var}(\omega) = \langle \tau \rangle + \operatorname{Var}(u_{\Omega}) + 2\operatorname{Cov}(\kappa,u_{\Omega}) + ...$$

$$\mathsf{L=0, L=2, L=1 \text{ in direction}}$$

$$\operatorname{Skew}(\omega) = \frac{3\operatorname{Cov}(\tau,u_{\Omega}) + \operatorname{Cov}(u_{\Omega},u_{\Omega},u_{\Omega}) + ...}{\operatorname{Var}(\omega)^{3/2}}$$

$$\mathsf{L=1, L=3 \text{ in direction}}$$

$$\operatorname{Kurt}(\omega) = \frac{3\operatorname{Var}(\tau) + 6\operatorname{Cov}(\tau,u_{\Omega},u_{\Omega}) + \operatorname{Cov}(u_{\Omega},u_{\Omega},u_{\Omega},u_{\Omega}) - 3\operatorname{Var}(u_{\Omega})^{2} + ...}{\operatorname{Var}(\omega)^{2}}$$

$$\mathsf{L=0, 2, 4}$$

Nuclear diagnosis at NIF provides an unprecedented picture of stagnated ICF implosions

- Hohlraum and capsule symmetry respond to large drive perturbations (P₁) as predicted
- Nuclear diagnostics capture the thermodynamics and flow of the hot spot and cold shell
- Simulated hot spot and cold shell diagnostics match experimental observables
- The repeatability of the high foot implosion platform supports perturbed stagnation experiments

Our codes and diagnostics have captured the detailed effects of intentional perturbations

NIF

We used high-adiabat implosions with reduced highmode instability

High-adiabat implosions allow investigation of asymmetry and stagnation processes

Top-to-bottom drive imbalance (mode 1) is an ideal symmetry perturbation

- Implosions are sensitive to mode 1
 - Buoyancy force on hot spot due to P₁ acceleration
 - Hot spot flows
 - Shell asymmetry
 - Similar flows result from ice layer asymmetry

- Mode 1 effects are observable by nuclear diagnosis
- Signatures of mode 1 are present in many high foot implosions

Spears, PoP 2014 Chittenden et al

Asymmetrically driven implosions are relevant to the stockpile stewardship mission on NIF

- Provide an experimental platform with asymmetric radiation flow
- Detailed measurements of the stagnating plasma
- Detailed code predictions of observable signatures (neutron spectra)

Perturbed implosions provide an integrated test of our code capabilities

We measure multiple stagnation quantities by neutron spectrometry

Implosion asymmetry alters stagnation phase properties

Neutron spectrometers measure *apparent* ion temperature from spectral peak width

Hot spot flows increase the apparent (Brysk) temperature

Asymmetric 3D simulations show angular temperature variations due to flow

- Thermal temperature is 2.3 keV
- Apparent temperatures span 2.9 to 4.0 keV depending on direction
- Detector array typically samples 50% of full PTV

Hot spot flow can be estimated from temperature differences

P₁ perturbed experiments confirm our ability to measure flow-induced temperature variation

- Preshot simulations predict 1 keV temperature variation due to flow
- Experiments show very similar variation, amplitude and shape

We can measure 1 keV apparent Tion anisotropy

So, is the high foot apparent T_{ion} usually isotropic or not?

 $T_{Brysk} = \left(\frac{m_D + m_T}{k}\right)\sigma_v^2 + T_{thermal}$

The NIF data cannot (currently) distinguish between isotropy and the expected level of anisotrop

- Post shot simulations suggest Tion anisotropy of ~ 300 - 400 eV
- Detectors would typically sample ~ 150-200 eV
- Detectors can measure down to 500 eV anisotropy

See M. Gatu Johnson paper

We need neutron spectrometers that can measure 300 eV anisotropy

Neutron spectrometers measure bulk velocity from spectral peak shift

Measure speed and direction of hot spot translation

NIF

UCM#.ppt - Author - Meeting, Date

Mode 1 perturbed experiments confirm our ability to measure bulk flow velocity

Experimental measurement

85 +/- 15 km/s resultant 26 degrees off vertical

Preshot prediction

90 km/s resultant directly downward

Composition of multiphysics effects (laser propagation, LPI, radiation transport, implosion hydrodynamics) is mainly captured by HYDRA

The average high foot shot bulk velocity is 70% of the intentional P₁

8 of 19 HF shots have velocities larger than the P₁ shot

We haven't yet identified what is producing these perturbations

The cold shell conformation is probed by exiting neutrons

- Neutron spectrometers (nTOF) measure downscattered neutrons
 - High areal density DT scatters into 10 12 MeV band
 - Multiple lines of sight measure the asymmetry
- Flange Neutron Activation Diagnostics (fNADS) measure unscattered primary neutrons
 - Zr activated by neutrons above 1X.XX MeV threshold
 - 19 locations on chamber
 - Complementary to DSR

UCM#.ppt - Author - Meeting, Date

fNADS measured the predicted angular distribution of escaping primary neutrons

- Predicted fNADS variation of ~ 25% peak to valley \rightarrow measured 30%
- Expected P_1 asymmetry \rightarrow observed P1 plus 3D similar to control shot

We can predict aspects of the cold shell areal density distribution when the perturbation is large enough

The repeatability of the unperturbed implosion supports the perturbed results

- We have 3 nominal repeats
 - Yield: μ =7.0e15, σ =0.5e15
 - T_{ion:} μ=5.44, σ =0.087
- We developed a statistical model of variability using the growing database and Callahan scaling
 - Uses both repeats and other high foot shots
 - Predicted variability compared favorably with a blind test on a repeat shot
- Stagnation properties are repeatable, even if not perfected

```
Calibration N140520 = 7.6e15
N150121 = 6.3e15
Prediction 6.5e15 +/- 1e15
Outcome N150409 = 6.9e15
```


Izumi, Debbie Callahan, Brian Spears

The repeatability of the platform is sufficient for testing perturbation effects

Reduction in yield was smaller than predicted by <u>single</u> <u>failure mode</u> simulations

- Control shots:7.0e15 +/- 0.5e15
- P1 shot gave 4.8 e15
 - Experiment degradation was 30%, observed 3σ reduction from control
 - Expected degradation was 60%, observed 3σ above expectations

<u>Control shots</u> N140520 = 7.6e15 N150121 = 6.3e15 N150409 = 6.9e15 $\underline{P_1 \text{ shot}}$ N150318 = 4.8e15

The yield is different from the controls

The yield is different from the prediction

Stagnation measurements can be much more informative

New measurements provide increasingly detailed picture for code validation

Nuclear diagnosis at NIF provides an unprecedented picture of stagnated ICF implosions

- Hohlraum and capsule symmetry respond to large drive perturbations (P₁) as predicted
- Nuclear diagnostics capture the thermodynamics and flow of the hot spot and cold shell
- Simulated hot spot and cold shell diagnostics match experimental observables
- The repeatability of the high foot implosion platform supports perturbed stagnation experiments

Precision diagnostics, platforms, and codes are advancing our validation efforts

