Development of a monoenergetic proton backlighter at the NIF

C.K. Li et al., Science (2010)

C. K. Li MIT National Diagnostics Workshop October 6-8, 2015, LANL, Los Alamos, NM

Collaborators

MIT

LLNL

LLE-UR

F. H. Séguin J. A. Frenje R. D. Petrasso H. Sio A. Zylstra

J. R. Rygg S. Le Page H. S. Park

B. A. Remington

S. Craxton P. McKenty T. C. Sangster

- Proton radiography on OMEGA has provided unique information for studying HED plasmas, ICF dynamics, and astrophysical phenomena
- Proton radiography have been proposed for NIF experiments
- Significant progresses have been made for developing a proton backlighter at the NIF

Proton radiography on OMEGA

- □ Proton backlighter for the NIF
- □ Plan for the first NIF Discovery Science shots

The proton backlighter is a laser-driven glass capsule filled with D₂ and ³He gas

C. K. Li et al., PRL (2006) C. K. Li et al., RSI (2006)

Proton radiography has been routinely used to study fundamental HED plasmas at OMEGA

Time-resolved proton radiographs reveal the structure and dynamics of direct-drive ICF implosions at OMEGA

Proton images provide new insight into plasma flow, RT instabilities and diffusive-mix in laser-driven hohlraums

Proton radiography provide a powerful diagnostics for studying astrophysical phenomena in laboratory

- M. J. Rosenberg et al., Nature Comm. (2015)
- C. Huntington *et al.*, Nature Phys. (2015)

Proton radiography on OMEGA

Proton backlighter for the NIF

□ Plan for the first NIF Discovery Science shots

Proton radiography is highly desired at the NIF to provide unique diagnostic information for various experiments

A fundamental requirement of NIF backlighter is the polar-drive configuration

Dhe3 exploding pusher target 0.4-0.8 mm diameter

Only 4-8 quartz beams are used versus 192 on the standard exploding pusher

Laser:

- 1-3ns pulse
- 2.5 kJ/beam

Simulation results:

- Yp: 3.4E11
- Yn: 3.92E11
- Bangtime: 1.69ns
- Hot spot: 82 um
- Ti: 9.93 keV
- Fuel rR: 5.5 mg/cm2

2D simulations haven been conducted for NIF backlighter at different drive configurations and conditions

An optimized design has been made for the NIF

It is proposed to use 24 NIF beams (providing 20 kJ of energy) to implode a 210- μ m-radius, thin D³He-filled glass shell. This design achieves an energy deposition uniformity of 9.6% rms, which will generate proton yields > 10¹⁰.

Recent NIF exploding-pusher implosions demonstrated the feasibility of a proton backlighter

In the coming months, we will investigate proton yield and source size as a function of various capsule and laser parameters

OMEGA experiments have provided critical information for developing a proton backlighter at the NIF

N. M. Hoffman et al. PoP (2015)

M. J. Rosenberg et al., PRL (2013)

K. Molvig *et al.* PRL (2012)

OMEGA experiments indicate that a smaller target resulted in a smaller burn region, providing higher spatial resolution

□ Proton radiography on OMEGA

□ Proton backlighter for the NIF

Plan for the first NIF Discovery Science shots

The first NIF Discovery Science shot will explore a higher spatial resolution backlighter with a smaller target

The second NIF Discovery Science shot will explore a backlighter implosion with phase plates

Systematic quantifying the NIF backlighter implosions will provide temporal, spatial and spectral radiography resolutions

We will explore aspects important to an advanced proton radiography at the NIF

- Proton radiography on OMEGA has provided unique information for studying HED plasmas, ICF dynamics, and astrophysical phenomena
- Proton radiography have been proposed for NIF experiments
- Significant progresses have been made for developing a proton backlighter at the NIF