A Pulse-dilation detector for MRSt

presented at the

National ICF Diagnostics Working Group Meeting

October 7, 2015

T. Hilsabeck, J. Frenje, J. Hares
MRSt presents a significant challenge for signal detection

An instantaneous proton signal leaving TCC arrives at the image plane of the dispersing magnets spread out over 200 mm and 15 ns in time.

We’d like to record the signal from each of ~40 bins with 20 ps time resolution, but skew across the image plane requires bins of width

\[\delta x = \frac{\Delta x}{\Delta t} \delta t = \frac{200 \text{ mm}}{15 \text{ ns}} (0.02 \text{ ns}) = 0.267 \text{ mm} \]

\[N_{\text{det}} = \frac{\Delta x}{\delta x} = 750 \]

Thus, we need at least 750 channels with 20 ps resolution to meet the requirement.
Need to remove time skew across energy bins to reduce required resolution: *idea is try manipulating electrons*

MeV protons knock electrons out of CsI with a yield of 3-4

Once the signal is converted electrons, we can easily remove the temporal skew across the energy bins

A longer drift length gives a lower required voltage gradient

Lower voltage gradient is desirable for temporal magnification using pulse-dilation

15 ns skew can be removed using 800-1400V drifts over a meter
Staged tube approach to deskew and pulse-dilation

DC voltage gradient applied at cathode. Resulting velocity dispersion removes skew after appropriate drift distance.

All electrons arrive here within 200ps. Fast ramp in the gap dilates the signal.

Multiple anode outputs into digitizer channels record dilated signals in ~40 energy bins.
It may be possible to accomplish both functions with a single front-end

time dependent potential applied via colliding pulses traveling along wires in y-direction

\[V_{\text{drift}}(x=200) = 1400 \, \text{V} \quad \text{temporal mag} = 7 \]

\[V_x(x) = -4200 + 30 \, x \quad [x \, \text{in mm}] \]

\[V_t(t) = 5000 - 350 \, t \quad [t \, \text{in ns}] \]

\[V_{\text{pc}}(x,t) = V_x(x) + V_t(t) \]

\[V_{\text{drift}}(x=0) = 800 \, \text{V} \quad \text{temporal mag} = 15 \]

1 m

all electrons hit back-end 60 ns after first deuteron hit

a concern is the Ex in acc. gap and its effect on electron orbits
Spatial voltage gradient can be applied with array of strips, but cathode must be stood off to smooth out wiggles.

DC potential applied to strips to get gradient along cathode

Time dependent potential (ramps down from this peak over 15 ns)
Simulation of dual function front-end electron signal drift input pulse width 100 ps, 10X temp mag, 15X deskew
Electrons strike anode within 250 μm of birth location in transverse plane for $B = 500$ Gauss (2X T_e contribution)

Transverse electric field due to deskew potential can pump up Larmor orbits

Here effect contributes ~ 100 μm to electron spreading, about same as that due to electron birth energy of 1.7 eV
Modest magnetic field required in electron drift tube

Electrons will follow magnetic field lines while executing Larmor orbits

Electrons born near to the edge of the photocathode land outside the anode

protons must enter solenoidal field of electron drift tube

Need to determine if proton focusing is disturbed

![Fraction of electron signal collected vs magnetic field graph](image)

- Fraction of electron signal collected
- Magnetic field [Gauss]
- Cathode diameter: 5 mm, 10 mm, 20 mm

![Diagram of electron drift tube](image)
Pulse-dilation MRSt detector parameters

- Drift tube length: 1 m
- Magnetic field: ~100 Gauss
- Drift energy range: 800 V – 1400 V
- Temporal mag: ~10X
- Cathode ramp: 5 kV in 15 ns
- Deskew bias: 10 kV over 200 mm
- Digitizer channels: 40
- Digitizer bandwidth: 200 ps