

MRSt for time-resolved measurements of the neutron spectrum at the NIF

 $^{1)}$ Frenje et al., POP (2010); $^{2)}$ Hilsabeck et al., RSI (2011).

National ICF Diagnostics Working Group Meeting LANL, October 6-8, 2015

Collaborators and Sponsor

J. Frenje¹, T. Hilsabeck², M. Gatu Johnson¹, C. Wink¹, C. Li¹, F. Seguin¹, R. Petrasso¹, R. Bionta³, A. Carpenter³, C. Cerjan³, D. Casey³, M. Jackson³, P. Bell³, J. Kilkenny², V. Glebov⁴, J. Knauer⁴, T. Sangster⁴ and C. Stoeckl⁴

¹ Plasma Science and Fusion Center, Massachusetts Institute of Technology

² General Atomics

³ Lawrence Livermore National Laboratory

⁴ Laboratory for Laser Energetics, University of Rochester

The MRSt will provide essential info on the evolution of fuel assembly/hot-spot formation/ α -heating for $Y_n > 5 \times 10^{15}$

- The MRSt-point design (Rev 3) meets the top-level requirements of measuring $Y_n(t)$, $T_i(t)$ and $\rho R(t)$ with a Δt <20ps and accuracy of <7% for Y_n > 5×10¹⁵.
- The MRSt-point design consists of:
 - 1-mm diameter, 20- μ m thick CH₂ foil positioned 0.3 cm from TCC.
 - 2 electro-magnets positioned just outside the chamber.
 - A pulse-dilation-drift-tube detector for detecting recoil protons (12-15 MeV).
 - Shielding surrounding the detector.
- Path forward:
 - 2nd-order aberrations will be corrected for by introducing curved pole boundaries and a field gradient in the 2nd magnet.
 - Shielding will be designed/optimized to reduce background to required level.
 - More refined simulations, compared to hydro modeling, will be done to raise the fidelity of the MRSt design and performance.

Outline

.

Motivation and Requirements

- MRSt-point design (Revision 3)
 - Magnet system
 - Foil
 - Detector system
- Signal considerations
 - Δt and efficiency (ϵ) vs magnet-aperture area.
 - $\Delta t_{ion-optics}$, $\Delta E_{ion-optics}$ and time skew vs MRSt location
 - Signal distribution for 3 NIF implosions
- Path forward and Schedule

Motivation

Timing and evolution of $Y_n(t)$, $T_i(t)$ and $\rho R(t)$ provide essential info on evolution of fuel assembly/hot-spot formation/ α -heating

Info on $Y_n(t)$, $T_i(t)$ and $\rho R(t)$ can be obtained through time-resolved measurements of the neutron spectrum

$Y_n(t)$, $T_i(t)$ and $\rho R(t)$ must be determined with a time resolution of <20ps and an accuracy of <7% to assess effect of alpha heating

Parameter	Requirement
Time resolution (Δt)	< 20 ps ¹⁾
Energy resolution (ΔE_{l})	< 300 keV ²⁾
Efficiency (ε_{12MeV})	>5×10 ⁻¹² for $Y_{n'}$ > 2×10 ¹⁴ ³⁾

¹⁾ Δt < Burn duration of 40 – 150 ps.

²⁾ $\Delta E_l < \Delta E_{Doppler}$ at 3 keV.

³⁾ $\varepsilon_{12MeV} > (1 \times 5 \text{(time bins)} / 0.07^2)^* (1/2e^{14}) \sim 5 \times 10^{-12}$

Outline

Motivation and Requirements

- MRSt-point design (Revision 3)
 - Magnet system
 - Foil
 - Detector system
- Signal considerations
 - Δt and efficiency (ϵ) vs magnet-aperture area.
 - $\Delta t_{\text{ion-optics}}, \Delta E_{\text{ion-optics}}$ and time skew vs MRSt location
 - Signal distribution for 3 NIF implosions
- Path forward and Schedule

A 1st-order MRSt design (Rev. 3) has been found that meets the 20-ps time-resolution requirement

A 1st-order MRSt design (Rev. 3) has been found that meets the 20-ps time-resolution requirement

Conceptual 1st-order design – Foil

A 1-mm diameter, <100 um thick CH₂ foil must be positioned <0.7 cm from TCC to meet the top-level requirements

A small CH₂ foil very close to TCC is key to the MRSt performance

*** A magnet aperture of 2×2 cm² was used in these calculations.

^{*} Time spread of neutrons producing protons with one energy.

^{**} Energy spread of neutrons producing protons with one energy.

In similar spirit to Charles Yeaman's work, the current plan is to attach the 1-mm diameter CH₂ foil to the Hohlraum

- This solution does not require a DIM or TANDM for the insertion of the foil.
- Since the foil will be disposable, a CH₂ foil is preferable over a CD₂ foil
- This approach can easily be tested using a WRF-proton spectrometer.

A segmented anode pulse-dilation drift tube with 1GHz digitizer readout is being explored for the MRSt

Protons hit the CsI photocathode -> 2-3 secondary electrons are accelerated by a time varying electric field -> signals aligned in time at 2nd accelerating region -> signal stretches as it traverses the drift region -> Gain with MCP -> segmented anode with many channels read out on 1GHz digitizers.

For more details, see next talk by Terry.

Outline

- Motivation and Requirements
- MRSt-point design (Revision 3)
 - Magnet system
 - Foil
 - Detector system

Signal considerations

- Δt and efficiency (ϵ) vs magnet-aperture area.
- $\Delta t_{\text{ion-optics}}$, $\Delta E_{\text{ion-optics}}$ and time skew vs MRSt location
- Signal distribution for 3 NIF implosions
- Path forward and Schedule

Simulations indicate that the magnet-aperture area must be smaller than 5×2 cm² to meet the time-resolution requirement

Positioning the MRSt-magnet aperture closer to TCC than 550 cm does not significantly improve time resolution

The MRSt-point design will be able to measure $Y_n(t)$, $T_i(t)$ and $\rho R(t)$ with a Δt <20ps and accuracy of <7% at $Y_n = 5.7 \times 10^{15}$

At $Y_n = 8.1 \times 10^{15}$, the MRSt-point design will be able to provide info on evolution of fuel assembly and effect of α -heating

At $Y_n = 3.6 \times 10^{16}$, the MRSt-point design will provide detailed info on evolution of fuel assembly and effect of α -heating

Outline

- Motivation and Requirements
- MRSt-point design (Revision 3)
 - Magnet system
 - Foil
 - Detector system
- Signal considerations
 - Δt and efficiency (ϵ) vs magnet-aperture area.
 - $\Delta t_{\text{ion-optics}}, \Delta E_{\text{ion-optics}}$ and time skew vs MRSt location
 - Signal distribution for 3 NIF implosions

Path forward will involve magnet-design improvement, S/B optimization and more refined simulations

- The optimized and final MRSt-magnet design will be determined using numerical simulations (Geant4 and Comsol).
- 2nd-order aberrations will be corrected for by introducing curved pole boundaries and a field gradient in the 2nd magnet.
- This effort will be done with DanFysik (Denmark), SigmaPhi (France), Scanditronix (Sweden) or Everson Tesla (US), and reviewed by Georg Berg at Notre Dame.
- Shielding will be designed and optimized to reduce background to required level.
- More refined simulations, contrasted to hydro modeling, will be done to raise the fidelity of the MRSt design and performance.

Chris Wink

Schedule

Schedule from October 2014

- Define top-level physics requirements (FY15).
- Define optimal foil characteristics and location (FY15).
- Define optimal magnet design (FY15).
- Define optimal pulse-drift-tube design (FY15-16).
- Define optimal shielding for γ 's/n's (FY15-16).
- Build/characterize CD foils (FY16-17).
- Define engineering design, (FY16-17).
- Build/characterize detector (FY16-17).
- Build/characterize magnet (FY17-18).
- Installation on the NIF (FY19)

In progress In progress In progress Extra

Time resolution (Δt) for the MRSt is dictated in part by position, area and thickness of the CD foil

NIF

The deuteron path-length difference from foil to aperture is insignificant, resulting in no additional temporal broadening

The maximum path-length difference between the foil and magnet aperture is ~0.07 mm, which corresponds to ~1 ps for 12.4 MeV d