Exceptional service in the national interest

Wolter Imaging On Z

Chris Bourdon, Manager Z Imaging and Spectroscopy Julia Vogel, LLNL; Ming Wu, SNL ICF Diagnostics Workshop, October 5th 2015

> Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

K- α emission from z pinches can provide >15 keV x-rays for Radiation Effects Science – Where do these x-rays originate?

Non-thermal processes (cold K- α) become more efficient at >15 keV

Spectra show cold K- α from a large area, but structure is complex

Monochromatic Ka imager needs

Need	Goals	Driver
Photon energies (Kα's)	Mo: 17.479 keV Ag: 22.163 keV W: 59.318 keV	Study K-shell radiators from Ag to W Also: Off line-center? (L-shell state) He-α?
Spectral window	~1 keV	Simultaneously view K-alpha 1 & 2 from cold and low-ionization states
Field of view	+/-12 mm	Collect all emission from 2 cm pinch. Kα emission comes from large diameter
Spatial resolution	0.1 mm desirable; 0.25 mm required	Resolve length-scale of structures emitting K α (don't know what these are)
Time resolution	Time integrated OK initially ~1 ns in 3-5 years	Resolve evolution over pulse
Sensitivity	100 J from ~cm^3 source with good signal to noise	Able to record 100 J over full source area
Calibration	Relative response at image plane known to <10%	No need for absolute calibration

- Other considerations
 - Survivable (optic at >40 cm from source)
 - Hard x-ray background (1-inch W in LOS)
 - 0 degree view (detector <300 cm from source)

A mag = 3 Wolter microscope would go along a 0-degree port on the Z target chamber with the optic \sim 75 cm from the source

The development roadmap has the first Wolter system fielded on Z in FY17 with time-resolved versions on Z and NIF in FY19

Wolter Microscope	FY15							FY15 FY16										-			-	-				FY18									-		FY	19			-								
Tasks	0	NC)]	F۱	MA	M	IJ	JΑ	S	0 1	NI	D I	F	Μ	A	MJ	J	А	S	0	N	DΙ	F	Μ	1A	Μ.	l 1	А	S	0	NC)]	F	Μ	A	MJ	J	А	S	0 1	NC)]	F	Μ	A	MJ	J	А	S
Z Tasks																																																	
NASA Contract Placement												<u> </u>																																					
CDR																																																	
Wolter Manufacturing												•																																					
Development of Calibration Capa	bili	ties	3																																														
Optic Testing																																																	
Design of Optic Alignment Assem	bly	'																																															
Design of Detector (Time-integrat	ted)																																											\square				
IDR																		$\left(\right)$																															
Final Design of Mechanical Comp	on	ent	s																																														
FDR																																																	
Manufacturing																							•																										
Commissioning																																																	
Integration of H-CMOS detector																																																	
																			C	DF	2								I	DR				F	DR							Сс	om	ple	etic	on			
NIF																				\diamond										\diamond					\diamond								•	\diamond					
																																													ιT				

- Manufacture and test multi-layer Wolter optic for Z before beginning significant design for NIF
- hCMOS at 20-40 keV comes available in FY18-19

Why a Wolter?

- Requirement is for large FOV (so no kB)
- Can de-couple resolution from effective collection area
- Custom tailoring of x-ray spectral bands
- Comparison with a Pinhole:
 - For same magnification and detector plane:
 - ~2mm pinhole to maintain same number of photons on detector
 - Resolution insufficient
 - To maintain resolution, 400X decrease in signal
 - SNR insufficient
 - To maintain similar resolution and signal level on detector: 100micron pinhole; detector 35 cm from load (pinhole 23 cm), assuming equivalent filter efficiency.
 - Detector survivability an issue, facility integration much more challenging, higher background

Parametric design space for SNL Wolter Optic

Case A1-A8 (Mo)

- M=3/4
- D= 2.54/2.92/3.05 m
- Mirror length $(L_H) = 30/40$ mm
- θ_i = 1.33°
- FoV ≈ ± 10 mm
- η **≈ 10**⁻⁵

Case B1-B8 (Ag)

- M=3/4
- D= 2.54/2.92/3.05 m
- Mirror length (L_H)= 30/40 mm
- $\theta_i = 1.05^{\circ}$
- FoV ≈ ± 10 mm
- η **≈** 10⁻⁵

Case C1 (Mo)

- M=4
- D= 3.00 m
- Mirror length $(L_H) = 20 \text{ mm}$
- $\theta_i = 0.47^\circ$

(Suzanne's parameters)

Parameters for case A and B are similar, but currently optimized for corresponding energy

Note: all curves are "ideal curves", i.e. no figure error, ML included

Resolution (object plane), mirror length

Resolution (object plane)

Resolution (object plane)

Wolter Optic calibration

- The calibrations are needed to determine throughput and resolution as functions of x-ray energy and off-axis angles
- Initial calibration at synchrotron light source (APS)
- Develop in-house calibration facilities (LLNL and SNL)
- X-ray source requirements: energy (15-100 keV), flux (~10⁶ photons.sec⁻¹.mm⁻²), and beam size (10s mm for SNL)
- High precision rotation and translation stages for Optics: three-axis rotations, (0.001°) and two-axis translations (~ 1µm)
- Hard x-ray imaging detectors: CCD-based hard x-ray imager

Shock and debris pose major challenges

- Wolter Multilayer Optic will sit ~76 cm from the pinch
 - Protecting from debris damage and soot deposition critical
 - Plan is to use heavy filtering and hermetic sealing of optic to protect it
 - 3 X 0.5 mm aluminized Kapton on front, 1X0.5 mm on back
 - Sintered filter on vent port
- Significant experience with other diagnostics (CRITR, TIPC) at similar or nearer locations using this methodology
- Promise shown with other protection schemes for large-format imagers (XRS3; UHD polymers)
- Strategy will be to protect the optic, but make the alignment stage lowcost, potentially disposable

Optic Alignment Tolerance and Alignment Strategy

Sandia National Laboratories

- Alignment requirement based on:
 - optic performance simulation
 - angular misalignment will be similar to thin lens
- R, Z, Theta of optic: +/- 1 mm acceptable
- Angular alignment +/- 2 miliradians

- Alignment logistics:
 - Retro-reflector on back of optic
 - Visible laser to define optical path, angular alignment of optic
- Motorize alignment to enable alignment from diagnostic boat and while under vacuum

Detector

Ref: RSI Vol 79, 113102 (2008)

- H-COMS:1- 2 ns gate time, 8frame, FY18)
 - 3-D diode approachHigh Z material, Ge or GaAs

Summary

- Initial studies show it's feasible to meet the science objectives for measuring cold k-alpha emission on Z with a Wolter microscope
 - Simulations of resolution (HPM) meet requirement
 - Estimated reflectivity and spectral window promising
 - Alignment tolerances achievable
- Implementation appears to be straightforward
 - Debris mitigation feasible
 - Alignment requirements do not require complex implementation
 - Time-integrated detector trivial (image plate), time-gated depends on hCMOS development of a high-energy (20-60 keV)sensor in FY18