X-ray imaging with Wolter optics in the 15-50 keV range

National ICF Diagnostics WG Meeting 2015

Julia Vogel, Mike Pivovaroff, LLNL Chris Bourdon, Ming Wu, SNL Joe Kilkenny, GA Brian Ramsey, NASA MSFC Suzanne Romaine, Harvard-CfA

Los Alamos National Laboratory, Oct 6-8, 2015

LLNL-PRES-801505

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Leveraging research programs to build Wolters for hard X-ray applications

Leverage existing collaborations between LLNL, NASA MSFC and CfA:

Combine technologies to develop and build new diagnostics needed for NNSA facilities

- Two conic surfaces of revolutions to nearly satisfy Abbe sine rule
- Three families of designs, one of which can be nested (Wolter I) and is widely used
- Wolter I has properties similar to a thin lens

→ Advantages include:

large solid angle and large FOV

- Two conic surfaces of revolutions to nearly satisfy Abbe sine rule
- Three families of designs, one of which can be nested (Wolter I) and is widely used
- Wolter I has properties similar to a thin lens

→ Advantages include:

large solid angle and large FOV

Elliptical surface

- Two conic surfaces of revolutions to nearly satisfy Abbe sine rule
- Three families of designs, one of which can be nested (Wolter I) and is widely used
- Wolter I has properties similar to a thin lens

→ Advantages include:

large solid angle and large FOV

Elliptical surface

- Three families of designs, one of which can be nested (Wolter I) and is widely used
- Wolter I has properties similar to a thin lens
- \rightarrow Advantages include:

LNL-PRES-801505

large solid angle and large FOV

Elliptical surface

How do Multilayers optics work?

- Reflectivity for reflective (non-ML) coatings high up to critical angle (*θ_c*)
- θ_c decreases with increasing **E**

Approach: Multilayer coatings to extend energy range

→ Makes use of Bragg's law $m\lambda = 2d\sin\theta / (1+\chi) \approx 2d\sin\theta$

How do Multilayers optics work?

Multilayer coatings with constant period, *d***, for all bi-layers "constant d"** Multilayer acts as notch filter/ monochromator selecting a particular narrow energy range

 Tune the period (keep d the same throughout the stack) to maximize reflectivity at a specific E

Larger energies require smaller periods—current practical limit is d = 1.5 nm

How do Multilayers optics work?

Multilayer coatings with depth-graded d-spacings:

By varying the bilayer thickness through the stack, a range of energies can be satisfied for a single incident angle.

- Can extend energy width, at the cost of reflectivity loss
- The broader the energy response, the lower the overall reflectivity
 - Must perform a multiparameter optimization to be satisfy overall requirements

Parameters influencing optical design and ML prescription

Parameter	Optical design	Multilayer Recipe
Photon Energy <i>E</i>	No	Yes
FOV	Yes	No
Resolution <i>R</i>	Yes	No
Efficiency η	No	Yes

- Optics design includes
 - physical size of optic (e.g. $L_{H'}$ L_{E})
 - configuration (e.g. number of shells **N**, focal length **f**)

 $FOV \approx f \times \Delta \Theta$

(with angular view $\Delta\Theta$ depending on e.g. length of mirrors, graze angle, packing fraction of nested shells)

 $R \approx f \times \theta_Q$ (with angular quality θ_Q depending on the mirror quality)

- Multilayer prescription includes
 - Materials, d-spacing/depth-grading

E mostly determines ML recipe, complex optimization incl. depth-grading (can increase range of graze angles but at cost of drop in overall reflectivity, higher *E* have smaller graze angles)

NASA MSFC Replicated Optics Process: low costs for multiple optics – one mandrel for several E optics

Preparation of Mandrel

NASA MSFC's Replicated Optics Program: Astronomical applications (FOXSI, ART-XC, HEROES)

- FOXSI (Focusing Optics X-ray Solar Imager) is sounding rocket payload to study solar nanoflares
- 3× better spatial resolution and 10-100× better dynamic range than previous missions

LNL-PRES-801505

LLNL's program for high-E, small-d multilayer program

- Use multilayers to act as a notch or pass-band filter for SNM lines from 90–400 keV
- Requires ultra short-period *d*-spacing to work at as steep angles as possible
- Calibration simplified due to possibility to use simple lab sources

TEM view through WC/SiC multilayers

Fernandez-Perea et al. *Phy Rev Lett* **111**, 027404 (2013)

Brejnholt et al. *Opt Exp* **22**15364 (2014)

Fernandez-Perea et al. *NIM* **710**, 114 (2013)

LLNL-PRES-801505

Previous microscopes demonstrate many features needed for NNSA optics

- Goal: overcome major challenge of absorptive collimation which is the coupling between efficiency and spatial resolution
- Initial efforts funded by NIH (LLNL, MSFC, CfA, UCSF) for radionuclide imaging in mice [2005-2010]
- Later efforts (MIT, MSFC) funded by DOE/SC for neutron scattering
 - Currently at 70 µm spatial resolution, consistent with ~25" angular resolution (FWHM)
 - R&D needed to make small optics perform as well as space telescopes (5")

Pivovaroff et al. Proc SPIE 5923 59230B (2005)

Liu et al. App Phys Lett **102** 183508 (2013)

Liu et al. Nat Comm 3556 (2013)

Pre-clinical nuclear medicine 1 cm requires sub-mm resolution

Replicated X-ray optics for microscopy

Putting it all together: Bring new imaging systems to Z and NIF as part of the national effort

Z Applications: Imaging non-thermal k-alpha emission to diagnose stagnation conditions in a Z pinch **NIF Applications**: Self-emission imaging and radiography of ICF Implosions; Compton Radiography; Hot Spot T_e measurement

- → Organizing principal: Start with a Wolter for Z (Chris' talk on our progress), since the overall requirements are better matched to current fabrication capability (at NASA MSFC and CfA) for Wolter microscopes
- Performance of NIF KBO and Z Wolter will drive development of Wolter optics for NIF (we are just getting started on this)
 - → We know that NIF applications will have more stringent requirements on the Wolter optic itself, and this effort will demand dedicated R&D to improve the focusing performance

Current Status

- Sandia defined requirements for measuring cold K α emission on Z
- LLNL created possible Wolter designs and is developing detailed performance simulations
- Designs currently assumed perfect optics (100% reflectivity, no figure error) to constrain possible designs
- Next steps will include:
 - Realistic figure errors, that will impact spatial resolution
 - Realistic multilayer reflectivity, that will impact throughput (i.e., S/N)
- In parallel we are designing an X-ray optics calibration facility at LLNL and NASA MSFC/Harvard-CfA are getting ready for optics manufacturing

Initial studies show meeting Z science objectives feasible No major obstacles expected for implementation

Preliminary "desirements" for Wolter imaging on NIF

Desirement	Specification
Field of View	At least ± 150 µm
Spatial Resolution	Detector limited or 5µm FWHM
Efficiency	At least ×100 over standard pinhole
Depth of Field	~3mm
Total throw (under study)	2m, 8m, 22m
Magnification (depends on detector)	At least ×10

Before conducting a dedicated design effort for Wolter at NIF, we need to:

- 1. Conduct the broadest possible census of the NIF user community to understand their needs
- 2. Ingest lessons learned from X-ray imaging (using KB optics) at NIF
- 3. Ingest lessons learned from development and deployment of Wolters at Z

Expected challenges for NIF Wolter: navigating an interconnected multi-dimensional parameter space

- Hard energies → smaller critical angle, more scatter challenge for resolution (more off-axis blur) and efficiency
- High resolution → shorter mirrors, need higher substrate quality (figure worse for stubby mirrors) challenge for high energy, large FOV
- Large FOV→ large angular acceptance, need large f challenge for optics radius (large α → small r) and resolution (more off-axis blur)
- High efficiency → Longer mirrors, small angular acceptance, nesting

challenge for resolution (long mirrors have worse off-axis response) and large FoV

 Large magnification → large f challenge for optics radius (large f → small r) and resolution (more off-axis blur)

Wolter Microscope	FY15	FY16	FY17	FY18	FY19	FY20
Tasks	ONDJFMAMJJAS	ONDJFMAMJJAS	OND J FMAM J J A S			
Z Tasks						
NASA Contract Placement						
CDR						
Wolter Manufacturing						
Development of Calibration (Capabilities					
Optic Testing						
Design of Optic Alignment As	sembly					
Design of Detector (Time-inte	egrated)					
IDR						
Final Design of Mechanical Co	omponents					
FDR						
Manufacturing						
Commissioning						
Integration of H-CMOS detec	tor			•		
NIF Tasks						
NIF Nested T_e						
Point designs for potential ex	periemnts					
Wolter optic design and test						
Systen Design and Engineerir	ng					
NIF Strength (50 keV)						

State of the art for Wolter optics (astrophysicsdriven for 50 years)

Current missions with best-of-breed optics

Mission (launch)	Angular Resolution		Mirror types	Spatial Resolution [µm]		Energy range	Telescopes ×	Best
	HPD	FWHM		Design 1	Design 2	[keV]	SHEIIS	
Chandra (1998)	0.5"	0.1"	integral Zerodur shells	0.4–2	0.6–3	0.1–12	1 × 4	resolution
XMM- Newton (1999)	15"	5"	integral replicated Ni shells	20–61	31–92	0.1–10	3 × 56	throughput × FOV
NuSTAR (2012)	58"	25"	segmented glass	102–236	153–354	3–79	2 × 133	highest energy

Drivers:

- Higher energies
- Lightweight optics
- Angular resolution
- Throughput

- Design 1: D = 2.4 m, Mag = 3 Design 2: D = 9.0 m, Mag = 9
- Challenge is to simultaneously combine these attributes
 - NASA MSFC has been developing replicated X-ray optics for ~20 years to meet these requirements

•

Harvard-CfA's developed novel technology for ML deposition on small diameter optics

Deposition of multilayers on mandrel

- Direct deposition of multilayers on small-radius replicated shells not feasible
- MLs deposited on mandrel using release coating, then grow shell around ML and release
- Mandrel can be cleaned and reused:
 - 22 successful replications from same (flat) mandrel without refurbishing
 - ML structure of replicated W/Si basically not degraded

Motivations for NIF

Many experimental platforms at NIF require a narrowband, high energy (>20keV) response to improve signal to noise

- ICF hotspot self emission imaging
- ICF Compton scattering from remaining fuel mass
- Material strength experiments
- Complex hydrodynamics

- All experiments need significantly more flux to the detector than can be delivered by pinholes or KB systems
- The goal is to deliver 100× more flux than the currently used pinhole systems

Nested multilayer Wolter optics coupled to a pulsedilation SLOS will enable space-resolved T_e of capsule

Benefit: enables multi-monochromatic imaging (MMI) in the optically-thin regime

Wolter optics will enable high-contrast measurements for strength experiments on high-Z materials at NIF

- Optimal energy depends on Z and thickness
- 40-60 keV is optimal for some important applications.

Multilayer Wolter Imaging

Multilayer Wolter Optics

Face-on radiography

- Large solid angle improves signal by ~40×
- Narrow band response improves contrast by filtering out-of-band photons
- Enables multi-frames per shot

Risks and Mitigation

Risk	How to eliminate risk	Impact	How to counteract and keep performance degradation small	Possibility
Figure errors in optics	R&D prototyping	Limits FOV	Reduce operating distance	Medium
Deposition of small-d multilayers on mandrels	R&D prototyping	Limits throughput	Work at shallower graze angles; nest multiple shells	Low
Mandrels require frequent refurbishment	prototyping	Higher-cost	Budget contingency; fewer number of energy-tuned optics	Low

Must also have efficient hard X-ray detectors with pixel pitch matched to optics

