

October 6, 2015

First Use of Hybrid CMOS Cameras on Z and NIF

John Porter on behalf of the UXI project team Sandia National Laboratories, jlporte@sandia.gov

Collaborators

- Sandia
 - Photodiodes: Doug Trotter, Rex Kay, and Quinn Looker
 - ASIC: Liam Claus, Gideon Robertson, Marcos Sanchez
 - Packaging: Lu Fang
 - Semiconductor fabrication: MESA Fab team and Zipptronix
 - Characterization & Z integration: John Stahoviak, Mark Kimmel, Joel Long, and Larry Ruggles

LLNL

- NIF integration: Hui Chen, Nathan Palmer, Jarom Nelson, Sukhdeep Heerey, and Perry Bell
- GA
 - **NIF integration:** Terry Hilsabeck and Joe Kilkenny

Outline

- Hybrid CMOS camera overview
- Characterization of "Furi" camera performance
- Images from Z & NIF
- Future plans and conclusion

A hybrid CMOS detector enables independent optimization of the radiation sensor and Integrated Circuit

Advantages of hCMOS architecture

- Photodiode array can be optimized for sensitivity to visible light, x-rays, electrons, protons, or neutrons
- ASIC can be optimized for exposure level, speed, pixel size, number of frames, and radiation tolerance
- Optimized cameras can be created by interconnecting different combinations of ASICs and photodiode arrays

Evolution of Sandia's hCMOS camera designs

	Griffin	Furi	Hippogriff	Icarus	Acca
Year	2012	2013	2014	2015	2016
Pixel pitch	25µm	25µm	25µm	25µm	25µm
Min. gate time	1.5ns	1.5ns	2ns	1.5ns (TBD)	1ns
Pixels	15 x 128	448 x 1024	448 x 1024	512 x 1024	512 x 512
Frames/pixel	4	2	2 ,4, or 8 (interlaced)	4	8
Sensor types	500-900 nm, 0.7-6 keV	500-900 nm, 0.7-6 keV	500-900 nm, 0.7-9 keV	400-900 nm, 0.3-9 keV 4keV electrons	350-900 nm, 0.2-9 keV 2keV electrons
Dynamic range	1000x, 1500-1.5x10 ⁶ e⁻	1000x, 1500-1.5x10 ⁶ e ⁻	1000x, 1500-1.5x10 ⁶ e⁻	1000x, 500-5x10⁵ e⁻	1000x, 500-5x10⁵ e⁻
Tiling option	No	No	No	No	Yes
CMOS process	350nm	350nm	350nm	350nm	130nm
Status	completed	completed	completed	in packaging	in design

We use a pulsed laser to characterize camera response to either x-rays or visible illumination

Sandia

National

Example of Furi time-response measurements using 200ps pulsed visible illumination

Sandia National

Laboratories

Example of Furi flat-field measurement using 600ps pulsed x-ray illumination

Sandia National Laboratories

Cross calibration of x-ray sensitivity using AXUV-100 Si photodiode

transmission

0.2

0.0

Ref. diode model: Ref. diode thickness: Ref. diode aperture: Ref. diode sensitivity: Target/diode distance: Target/F1X8 distance: X-ray filter: X-ray target material:

IRD AXUV-100 40-50µm 5 mm dia. 3.62 eV/e-h pair 77 cm 52 cm 12.5µm Al Mg (1.5 keV x-rays) Ref. diode integral into 50Ω: Ref. diode collected charge: Ref. diode absorbed energy: X-ray flux incident on Furi: Furi average exposure level: Furi sensitivity @ 1.5 keV: Furi design sensitivity for 100% absorption:

105 V-ns 1.3 x 10¹⁰ e⁻ 4.7 x 10¹⁰ eV 3.2 x 10⁶ eV/pixel 208 mV 1.5 x 10⁴ eV/mV

6 x 10³ eV/mV

5

6

4

2

3

x-ray energy (keV)

Experimental setup for axial soft x-ray imaging on Z of Magnitized Liner Inertial Fusion (MagLIF) target

Axial pinhole camera images on Z shot H33 (6/15/2015)

Furi timing relative to ZBL laser-heating pulse

A Furi camera is being fielded on NIF on the lower SXI diagnostic in place of one of the x-ray CCDs

Data courtesy H. Chen and N. Palmer (LLNL)

Comparison of Furi and CCD images on NIF shot N150901-002-999

Furi operated in 2ns-on/2ns-off timing mode

Frame 1

Frame 2

Data courtesy H. Chen and N. Palmer (LLNL)

Furi images from recent NIF exploding pusher experiment

Furi operated in 1ns-on/1ns-off timing mode

Frame 1

Frame 2

Data courtesy H. Chen and N. Palmer (LLNL)

Next Steps

Characterize & begin fielding next-generation cameras

- Hippogriff
- Icarus
- Small Outline Package

Integrate cameras into new diagnostics

- Multi-frame x-ray backlighting
- Pulse-dilation framing camera
- X-ray spectrometers
- Visible shadowgraphy
- Neutron detection

Correct limitations in present Furi/Hippogriff design

- Improve exposure uniformity
- Reduce integration time
- Option for using diodes optimized for higher- or lower-energy detection
- Option for "tiling" to increase effective sensor size