UV Thomson Scattering on the NIF

National ICF Diagnostics Working Group Meeting October 6 - 8, 2015

James Steven Ross

October 6th, 2015

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Optical Thomson Scattering (OTS) team

- OTS Working Group
 - LLNL: J. S. Ross, J. Moody, L. Divol, P.
 Michel, D. Turnbull, O. Landen, B. Pollock,
 G. Swadling, C. Goyon, O. Jones, J. Milovich
 - GA: J. Kilkenny
 - LLE: D. Froula, J. Zuegal, J. Bromage
 - LANL: D. Montgomery, J. Kline
 - SLAC: S. Glenzer
 - NRL: J. Weaver
 - SNL: A. Sefkow
 - AWE: D. Chapman
 - U. Alberta: W. Rozmus

- OTS Design Team (LLNL)
 - Target Diagnostic Lead Joe Kilkenny
 - Optical Diagnostic Lead John Moody
 - Responsible Scientist Steven Ross
 - Responsible Individual Philip Datte
 - Mechanical Design Justin Galbraith/ Michael Vitalich
 - Electrical Design Ben Hatch/Warren Massey/Gene Vergel de Dios/Ray Iaea
 - Optical Design Stacie Manuel/Bill Molander
 - Software Kelly Burns/Barry Fishler
 - Additional Support Steven Yang/Mike Rayce

Outline

- TS Physics Motivation
 - Hohlraum plasma conditions
- NIF Diagnostic requirements
- NIF Diagnostic design
- Point Design measurements
 - Hohlraum LEH
 - PDD
 - MagLIF
 - Collisionless Shocks
- Technical challenges
- Schedule

Improving our physics based hohlraum understanding and predictive capability is a major program focus

Thomson scattering has the ability to enhance our understanding of a majority of these issues

Gas-filled hohlraums rely on CBET to control shape

Our ability to predict CBET and implosion shape is highly dependent on our understanding of plasma conditions

A 1% flux asymmetry in the peak of the laser pulse can result in unacceptable (>30% P2/P0) shape

Shape control in vacuum hohlraums is a challenge due to wall motion

Lawrence Livermore National Laboratory

Optical Thomson provides a local measurement of the plasma conditions

Thomson scattering from a deep-UV probe beam will overcome the harsh environment that challenges optical measurements in a hohlraum

Expected TS signal is a few μ J

The deep-UV NIF OTS will be a pioneering diagnostic in Thomson scattering research

8

The 5 ω probe wavelength is critical to avoid scattering background from the 3 ω drive beams

G. Swadling will talk about this calculation in detail this afternoon.

A phased approach to Optical Thomson Scattering (OTS) will mitigate the risk presented by background levels

Based on the recommendation of two diagnostic workshops we have developed a phased approach

- Phase I
 - Assess background levels around potential probe wavelengths
 - Design and field an optical collection system
 - Supporting Electron Feature not to preclude Ion Feature
 - Alignment to ~200 microns for different target types
 - Utilize existing NIF beams for the probe on "simple" experiments (Quartraums, Collisionless Shocks, etc.)
- Phase II
 - Using the background measurements from Phase I validate the probe beam requirements
 - Design and field a Thomson scattering system with a dedicated probe beam to allow measurements on all platforms

The high level technical requirements for the NIF OTS system were developed to allow plasma characterization in NIF hohlraums

Spectrometers

- Ion feature band ($\Delta\lambda \pm 4$ nm)
 - Ion feature resolution $(\delta \lambda / \lambda) = 0.0001$
- Electron feature band (150-300 nm)
 - Electron features $(\delta \lambda / \lambda) = 0.01$
- Time window 5-35 ns

Probe laser

- Wavelength , λ_0- between 185-215 nm
- Power 10 GW
- Energy 10J
- Pulse width 1 ns, flat-top

Probe laser and collection port location – (0-0 notional)

- Probe to collection alignment ±50 μm
- Collection to target alignment ±250 μm
- Collection angle ~18 degrees

A DIM based OTS system is currently being designed

P. Datte will provide details in his talk this afternoon

An f/8.3 Schwarzschild telescope is used to collected scattered light from the TS volume

Collection Telescope

A pair of spectrometers are used to disperse the collected light

Initial OTS experiments will focus on measuring plasma conditions in the hohlraum LEH region

N110807

Synthetic data is generated using the expected system throughput, quantum efficiency and background

constant in time The properties of each

optical component are used to calculate the system performance

A signal to background of ~0.8 is expected for these experimental conditions using a 10J probe

IAW background is dominated by the EPW background due to time multiplexing.

The Thomson scattering ion feature will be used to determine ZTe and Ti

The electron feature will be used to measure Te and Ne

An accurate measurement of the system response and the hohlraum background is critical to making a useful electron feature measurement when alpha is low.

Thomson scattering will provide valuable data for a range of experimental platforms

Indirect Drive ICF

Direct Drive ICF

MagLIF

Discovery Science

Lawrence Livermore National Laboratory

5ω Thomson scattering will provide access to quarter critical plasma conditions in polar <u>direct drive experiments</u>

2.5 <u>× 1</u>0⁻⁹ LLE led experiments **Ion Feature** T (eV) n (cm⁻³) d(P_s/P_i)/dλ (nm⁻¹) 5000 4.00F+22 4500 2000 2.63E+22 1.5 4000 1.73E+22 3500 3000 4.93E+2⁻ 3.24E+21 2.13E+21 1.40E+21 (mµ) z 0.5 9.24E+20 6.08E+20 4.00E+20 208.5 209 209.5 210 210.5 211 211.5 212 212.5 Wavelength (nm) 3.5<u>×10</u> **Electron Feature** -2000 2.5 t(P_s/P_i)/d۸ (nm⁻¹) (P -2000 2000 0 2 x (µm) dacd, 8 ns 1.5 Thomson scattering will characterize the significant angular temperature gradients 0.5 predicted by hydrodynamic simulations **1**00 120 140 180 160

21

Wavelength (nm)

Magnetized Liner Inertial Fusion experiments will use OTS to characterize plasma conditions

SNL led experiments

Magnetization with external B-Field (10-30T) Laser heating with Z-Beamlet (2-6kJ @ 2-6ns)

With and without applied Bfield

> Room temperature or cryo gas-pipe with slots for xray transmission 351 nm NIF quad

- Measure laser propagation and wall mix along gas-pipe axis with and without B-field
- Measure x-ray emission from mid-Z materials and use results to improve radhydro models

S. Slutz et al, Phys. Plasmas **17**, 056303 (2010) M. R. Gomez et al, Phys. Rev. Lett. **113**, 155003 (2014)

The NIF gas-pipe will study laser heating and wall-mix physics

Collision-less Shock experiments are an ideal platform for 3ω **Thomson scattering**

A mirror can be used to change the scattering angle and k-match driven waves

This arm would need to be rotated out of the equatorial plane to k-match SRS driven waves

Technical challenges

- There are a number of target physics and laser concerns that are currently being investigated via experiments, analytic calculations and simulations
- 5ω Laser Development (DCS laser development talk this afternoon)
 - An joint effort with LLE is currently underway to develop a 5 ω probe laser
 - Initial 5 ω crystal testing is scheduled for later this year on MTW (LLE)
- X-ray blanking of the blast shield
 - High x-ray fluence has the potential to excite electrons in the blast shield making it opaque to the Thomson scattered light
- Bremsstrahlung background
 - A series of analytic calculations have been used to estimate the bremsstrahlung
 - The goal of Phase 1 is to measure the Bremsstrahlung level for a series of target configurations

G. Swadling will talk about these challenges in detail this afternoon

High level OTS schedule

System ready for 3ω TS measurements

System ready for 5ω TS measurements

- An OTS DIM based collection and laser delivery system is being designed to satisfy requirements for a range of experimental platforms (Indirect drive, direct drive, MagLIF, Discovery Science)
- The harsh hohlraum environment requires an innovative approach (210 nm Thomson scattering probe)
- A collaborative laser development effort is underway with LLE
- 3ω Thomson scattering and background measurements will begin late in FY16 and 5ω operations will begin in late FY18

