presented at the

National ICF Diagnostics Working Group Meeting

October 6, 2015

SLOS imaging is key to national strategy and transforms capability across ICF and the Science Campaigns

Multi-frame hCMOS imagers have recently been deployed for gated imaging on both Z and NIF

LEH imaging on NIF**

2 ns gate separated by 4 ns

Camera View of LEH

*Porter (SNL) et al.

**Chen (LLNL) et al.

Pulse-dilation SLOS with reflective x-ray optics solves high spatial and temporal resolution image problem

Three orthogonal LOS can theoretically provide some 3-D information*

Multiple orthogonal lines of sight Reconstructed 3-D Analysis by N. Izumi X:+23.6um Y: -23.6um

*Izumi (LLNL) et al.

High energy, single line-of-sight gated cameras are needed for face-on point-projection radiography on NIF

 Optimal energy depends on Z and thickness

Face-on Radiography

Face-on radiography

Detector Requirements

- 2mm x 4mm FOV at target
- <10 um/pixel at tcc
- QE of 50% at 17-22 keV
- 2-4 frames
- 5-20 ns frame separation
- ≥2 ns gate time
- Dynamic Range > 200

In the next 3 years, we will deploy a >1 MP hCMOS imager with 1 ns gate times over 8+ frames

GRIFFIN

1.5ns, 4 Frames 15x128 pixels 350nm Sandia Process

Calibration Mesh X-ray 1.5ns Images

FURI 1.5ns, 2 Frames 448x1024 pixels 350nm Sandia Process

10ns Blast Wave Visible Images

FY14

FY13

Commercial Double Exposed CCD

HIPPOGRIFF 2 ns, 2-8 Frames (Interlacing) 448x1024 pixels 350nm Sandia Process

VS.

FY16-18

4ns Gas Cell Shadowgraphs

ICARUS 1.5ns, 4-16 Frames (Interlaced) 512x1024 pixels 350nm Sandia Process

ACCA 1ns, 8 Frames 512 x 512 pixels (1-D tileable) 130nm IBM Process

UXI ROIC Architecture

Pixel Array

- 2-4 Frame In Pixel Storage
- Global Shutter

Timing

- High Speed Shutter & Pixel Control
- Adjustable Shutter Timing 1-19ns
- Adjustable Delay Between Shutters

Readout

- Random Access to Pixels (Region Of Interest)
- Multiple Parallel Channels Of Image Data

Photodiode

- 0.7-6keV X-rays & 500-900nm Visible Light
- I/O and Support
 - Timing Signal Diagnostics

UXI Camera Designs Existing or in Progress

'High' Full Well Sensors

	Presently in Use		New Design
	Furi	Hippogriff	Hippogriff 2
Year	FY14	FY15	FY17
Min. Gate	~1.5 ns	~2 ns	~1.5 ns
Frames	2 2 (full-chip), 4 or 8 (interlaced)		
Tiling Option	No	No	TBD
CMOS Process	350 nm (SNL)		
Pixels	448 x 1024		
Pixel Size	25 μm x 25 μm		
Capacitor			

Full Well

1.5 million e⁻

-19 mm

-11.2 mm-

Timing Generator

Left Right

Hippogriff

Active Pixel Array

448 x 1024

Readout Electronics

'Low' Full Well Sensors

Pulse Dilation			
Icarus	Acca		
FY16	FY18		
~1.5 ns	~1 ns		
4	8		
No	Linear Tiling		
350 nm (SNL)	130 nm (IBM)		
512 x 1024	512 x 512		
25 μm x 25 μm			

0.5 million e⁻

ACCA-The next generation burst mode hCMOS imager under development at SNL

• Specifications

- 512 x 512 pixel array
- 8 frames per pixel
- 1 ns integration time
- 2 ns frame rate
- 25 μ m spatial resolution
- Left/Right abutable design
- 60 dB (1000:1) dynamic range
 - 500e- to 500k e-
- Reduced readout dead-time
 - 1.45 ms per read-off of 512x512 pixels and 8 frames
 - Improvement from 135 ms on 1st generation imagers
 - 689, 8-frame movies per second in continuous read mode

The ACCA architecture enables a scalable number of frames and form-factor

Innovations

- Leveraging higher density 130 nm technology node
 - Increased transistor density and metal interconnect layers enable significant design improvements
- Left/Right 2-side abutment form factor
 - Infinite tiling in one direction
- Differential CML H-tree timing distribution
 - Expect improved timing distribution uniformity
 - 2 global clocks distribute Pulse Width Modulation (PWM) encoded shutter information
- In-pixel digital shutter generator converts the global clock PWM information to individual frame shutters
 - This architecture is scalable in number of frames while never requiring more than the 2 global clock signals to be distributed

Risks and mitigation strategy

- New technology (IBM 130nm CMOS8RF process)
 - Process leakage is worse with IBM than SNL's 350 nm CMOS7 process that our current ROICs are fabricated in
 - Increased readout speed to minimize leakage effects (1.45 ms)
 - Cool the device to 0 C
 - Bulk technology susceptibility to radiation
 - Test under radiation

GaAs diodes coupled to a Hippo-like ROIC with 50 μ m pixels could meet the needs for point-projection backlighting on NIF

ROIC (Hippogriff like)

- 50um pixels
- 512x512 pixels with 2 tiled sensors
- 2 frames or 4,8 frames interlaced
- ~2ns per frame
- Up to 6E6 e- per pixel per frame (~1200 photons at 22 keV in GaAs)

Detector

- 50um thick GaAs
- Photo-absorption > 50% at < 24 keV
- < 1 ns response time

Primary Challenges

- Pixelated GaAs arrays have been built before, but maybe not at this thickness
- Defects in GaAs need to be studied to determine yield (density of good pixels)
- Handling of potentially large currents needs to be studied
- ROIC needs to be re-designed for larger pixels and for 1-side abuttment
- Speed of ROIC needs to be studied with larger pitch and higher capacitance per frame

Integration of pulse-dilation, hybrid CMOS and x-ray optics staged over several years

- 8 frames in 200 ps 1 ns
- 2 images from pinholes
- 1 Icarus sensor

• SLOS 2:

- 16 frames in 400 ps 2 ns
- 4 images from KB Optic
- 2 Icarus sensors

- SLOS 3:
 - 24 frames in 400 ps 2 ns
 - 3 images from Wolter
 - 3 Acca sensors

SLOS 1 prototype instrument to be fielded with pinholes SLOS 2 will be designed to match KB Optic image layout

SLOS 1 is required to fit in a standard DIM airbox including all pulsers, electronics and energy storage for magnetic field

SLOS 1 performance parameters set by system contraints (DIM airbox length, CMOS gate time) and physics

assumes CMOS sensor 2 ns gate & 2 ns interframe dark interval

ramp duration = record length

practical drift voltage range 2.5-0.5 kV

390 mm = maximum drift length we could squeeze into airbox with pulsers & camera

Photocathode ramp pulse shapes control the temporal magnificatin and recording interval

Temporal mag. depends on drift time and PC ramp rate

As potential (drift time) drops ramp rate must decrease

operating modes for single strip SLOS in DIM

record length	gate width
190 ps	19 ps
265 ps	28 ps
390 ps	42 ps
600 ps	71 ps
1050 ps	133 ps

assumes 2 ns back-end gate

PC voltage profiles needed to achieve uniform temporal magnification of various magnitudes

Programmable photocathode pulser allows gate width/record length to be changed on the fly

Fast ramp pulser is comprised of 8 avalanche step generators which are added together to create main pulse

Each step generator can be independently timed via programmable delays thereby controlling ramp shape

> Trigger/control module Avalanche module 1

Power

FO coms

Fast trigger

PC monitor

Photoelectrons pass through a 4 potential regions which accelerate, separate and then slam them into photodiode

Icarus diode response to ~4keV electrons yields approximately 1 "count" per incident electron

photodiode electron responsitivity about right for SLOS

some fine tuning required depending on application

Statistics of CsI photoemission dictate weak dependence of detection efficiency on photodiode responsivity to electrons

200 nm CsI transmission photocathode

Monte Carlo simulation of 1st principles model of electron interaction with matter

Csl cathode yields ~20 e⁻ / absorbed x-ray

diode QE mainly affects dynamic range

optimum QE depends on background noise gain set by e⁻ boost, diode QE, ROIC specs

Pulsed magnetic produces uniform 6 kG field for 1:1 electron imaging resulting in 40 mm spatial resolution

1 kJ for magnetic field is stored in a 295 uF 2 kV electrolytic capacitor located in the DIM

Coil wound onto vessel with a single winding

Turns doubled near the end for field shaping

$$\delta = \sqrt{(4r_L)^2 + \delta_{CMOS}^2} = 39 \ \mu m @ 6 \ kG$$

328 x 656 pixels in 12.8 mm x 25.6 mm active area

single solenoid pulser design precludes "zooming" electron image

Vacuum feedthrus for Icarus sensor and HV pulsers challenging with space constraints in DIM

using coax & multilayer PCB as a vacuum barrier – proof tests planned

DC capacitor breaks isolate photocathode and anode cage

Icarus sensor must be shielded from RF noise generated by photocathode ramp at opposite end of drift tube

SLOS 1 scheduled to be taking data by end of FY16

