Optical Thomson Scattering: Background and Blanking

National ICF Diagnostics Working Group Meeting October 6 - 8, 2015

George Swadling

October 6th, 2015

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Optical Thomson Scattering (OTS) team

- OTS Working Group
 - LLNL: J. S. Ross, J. Moody, L. Divol, P.
 Michel, D. Turnbull, O. Landen, B. Pollock,
 G. Swadling, C. Goyon, O. Jones, J. Milovich
 - GA: J. Kilkenny
 - LLE: D. Froula, J. Zuegal, J. Bromage
 - LANL: D. Montgomery, J. Kline
 - SLAC: S. Glenzer
 - NRL: J. Weaver
 - SNL: A. Sefkow
 - AWE: D. Chapman
 - U. Alberta: W. Rozmus

- OTS Design Team (LLNL)
 - Target Diagnostic Lead Joe Kilkenny
 - Optical Diagnostic Lead John Moody
 - Responsible Scientist Steven Ross
 - Responsible Individual Philip Datte
 - Mechanical Design Justin Galbraith/ Michael Vitalich
 - Electrical Design Ben Hatch/Warren Massey/Gene Vergel de Dios/Ray Iaea
 - Optical Design Stacie Manuel/Bill Molander
 - Software Kelly Burns/Barry Fishler
 - Additional Support Steven Yang/Mike Rayce

Overview

Background noise assessment:

- Quantify plasma <u>emission</u>:
 - Bremsstrahlung self-emission
 - Thomson scattering of the 3ω drive beams
- Quantify <u>optical collection</u> of self emission:
 - How much of the emitted radiation is transported to the spectrometer

"Blanking" assessment:

- X-ray flux can cause the blast-window to become opaque or "Blank"
- Need to <u>quantify</u> blanking:
 - how much radiation is seen?
 - how much flux can window tolerate?
 - Can we shield?

Background Noise Assessment

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Background Assessment – Mathematical Framework

- Plasma is characterized by <u>Spectral Intensity</u> I_{e,Ω,λ_-} . This is defined in terms of the radiant flux density Φ_{e} .
 - <u>Power</u> per unit <u>volume</u> (*V*), <u>solid angle</u> (Ω) and <u>wavelength</u> (λ)

 $I_{e,\Omega,\lambda} = \frac{\partial^2 \Phi_e}{\partial \Omega \partial \lambda}$

 Optical emission from the plasma can be estimated based on <u>bremsstrahlung</u>:

$$I_{B,\Omega,\lambda} = \frac{2.09 \times 10^{-36} gZ^2}{4\pi} \left(\frac{n_e n_i}{\lambda^2 T_e^{1/2}}\right) e^{\frac{-1.24 \times 10^{-4}}{\lambda T_e}}$$

Sheffield et al. (2010) - Plasma Scattering of Electromagnetic Radiation

 We also need to assess the contributions from the <u>Thomson scattered drive beams</u> – more complicated!

$$I_{e,\Omega,\lambda} = I_{B,\Omega,\lambda} + I_{D,\Omega,\lambda}$$

Inverse Bremsstrahlung

Maps of plasma conditions obtained from simulation of a standard 4-shock hohlraum :

Lawrence Livermore National Laboratory

Inverse bremsstrahlung

The **bremsstrahlung emission** map can then be calculated (log plot!):

Lawrence Livermore National Laboratory

Thomson scattering of drive beams

- The calculation is <u>simplest</u> for collection <u>along the hohlraum axis</u>
- Each <u>Quad</u> is treated as a <u>single</u> <u>scattering geometry</u>
- the problem reduces to <u>4 scattering</u> <u>geometries</u>
- Thomson scattering power is calculated using following equations:

$$I_{D,\Omega,\lambda} = \sum_{beams} \frac{P_i r_e^2 n_e}{2\pi} \left(1 + \frac{2\omega}{\omega_i} \right) S(\omega, \vec{k}) ;$$

$$\vec{k} = \vec{k}_s - \vec{k}_i; \quad \omega = \omega_s - \omega_i; \quad \omega_i = \frac{2\pi c}{\lambda_i}; \quad \omega_s = \frac{2\pi c}{\lambda_i}$$

$$S(\omega,k) = \frac{2\pi}{k} \left[\left| 1 - \frac{\chi_e}{\epsilon} \right|^2 f_{e0}(\omega,k) + \bar{Z} \left| \frac{\chi_e}{\epsilon} \right|^2 f_{i0}(\omega,k) \right]$$

 Other collection geometries could be harder to model but not intractable.

We can calculate:

- Thomson Spectral intensity due to the probe beam: $I_{S,\Omega,\lambda}$
- Thomson <u>Spectral intensity</u> due to the <u>drive</u> beams: $I_{D,\Omega,\lambda}$
- Background **Bremsstrahlung** emission: $I_{B,\Omega,\lambda}$

But what does the spectrometer see?

Optical collection:

- Only <u>small fraction</u> of emitted or scattered radiation is <u>collected</u> by the <u>lens</u>
- Much of this is discarded by the spectrometer aperture
- These <u>spatial variations</u> in collection efficiency can be <u>quantified</u>

Optical collection (simplified...):

- Simplification for <u>lens aperture >> pinhole</u>
- The collection is treated by <u>limiting</u> range of <u>integrals</u> of $I_{e,\Omega,\lambda}$ over dV and $d\Omega$

Optical collection (simplified...):

- Within collection cone, the <u>pinhole limits</u> the <u>solid angle</u> of emission collected
- Project <u>Virtual Aperture</u> the aperture imaged into the plasma:

Final calculations for background

- These limits are used to <u>calculate</u> the <u>power</u> delivered <u>through</u> the <u>aperture</u>:
- Integrate 3D emission map over collection to find the power, P_{λ}

$$P_{\lambda} = \int_{V_c} \int_{\Omega_A} I_{e,\Omega,\lambda} d\Omega \, dV = 2\pi \int_{-\infty}^{\infty} \int_{0}^{\frac{Z}{2F}} I_{e,\Omega,\lambda} \frac{A_f}{z^2} r dr \, dz$$

Assumption: Plasma emission is function of <u>z only</u>:

$$P_{\lambda} = \frac{\pi A_f}{8F^2} \int_{-\infty}^{\infty} I_{e,\Omega,\lambda} dz$$

- This assumption is pretty reasonable given that the collection system is f/8.
 Collection is thus only along a relatively narrow column
- Assumption: Plasma emission is <u>uniform</u> from plasma of <u>length L</u>:

$$P_{\lambda} = \frac{\pi A_f L}{8F^2} I_{e,\Omega,\lambda}$$

Inverse bremsstrahlung

The **<u>F-cone</u>** is very narrow inside the Hohlraum – can be reasonably treated as 1D:

More detailed calculations...

Edge effects occur over the scale-size of the aperture.

• These have **no effect** on the <u>"total collection"</u>

Self Emission calculation results

- Self-emission background calculated from emission map shown earlier
- Signal to background of 0.8 is expected for a <u>10 J</u> probe
- <u>lon feature is resolvable</u> especially if background is known
- Electron feature measurement is extremely challenging due to shape sensitivity

Thomson Scattering of Drive calculation results

- Nominal 10 J Probe
- <u>lon feature</u> should be easily <u>analyzable</u>
- <u>3</u> scattering can be <u>subtracted</u> either through <u>background shot</u> or <u>constrained calculation</u>
- <u>Background</u> on the <u>blue-</u> <u>side</u> of the <u>electron feature</u> should be reasonably <u>small</u>
- <u>Effect</u> looks much <u>smaller</u> than <u>self-emission</u>

5ω TS Signal 3ω TS Signal from drive beams

X-ray Induced Blanking Assessment

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Blanking Assessment: The Problem

- Optically <u>transparent materials become</u> <u>opaque</u> when subjected to sufficient radiation
- The limits of <u>acceptable</u> radiation <u>dose</u> are <u>poorly understood</u>
- We <u>need</u> to know:
 - <u>Dose limit</u> for glass before "blanking"
 - Expected X-ray dose
- Experimental verification that OTS will not blank before measurement is essential

Previous Blanking Measurement

London et. al. Rev. Sci. Instrum. 79, 10F549

 Measurements of <u>fused silica</u> <u>transmission</u> under <u>x-ray</u> exposure at <u>OMEGA</u>

 X-rays produced by laser heating a gold sphere

 Results show ~ 80% transmission at ~ 0.3 Jcm⁻² x-ray fluence

Scaling to the NIF

- Estimate based on a nominal hohlraum shot
- Worst Case Scenario
- Calculated from <u>X-ray flux</u> measured by <u>Dante</u>
- Dose limit for "blanking" (0.3 J cm⁻²) reached at <u>2 ns</u> from drive-start
- Experiment wont work like this...

Reduce flux by 10...

 Extends blanking time to start of main pulse

Not good
 enough....

Reduce flux by 100!

Window doesn't blank!

Not clear this is possible...

Reducing the Dose – Line of Sight

- The <u>blast shield</u> will <u>not</u>
- Need to <u>quantify</u> how much this will help

Reducing the Dose – Solid Shielding

- Shielding is <u>difficult</u>
- In order to shield without reducing the collection cone shield must be <u>very</u> <u>close to target</u>
- Drive beams will get in the way

Reducing the Dose – Gas Shield

 X-ray Gas shield injected before shot

 Attenuates X-rays but not dense enough to block optical propagation

 Rely on supersonic gas
 <u>expansion time</u> to protect hohlraum from gas

Reducing the Dose – Change Configuration

- Alternatively can move to a <u>equatorial</u> measurement
- Reduced x-ray flux due to smaller diagnostic hole
- No Gold wall view
- Not our ideal choice surrogacy issues, hole closure etc.
- Again, need to quantify difference in Flux

Experimental Planning

 Need to <u>understand blanking</u> effects in a <u>variety of materials</u>

NIF Shot Concept

- Use Polar DIM
- Place glass samples over a range of distances from the Hohlraum
- Distances control the <u>X-ray</u>
 <u>Fluence</u> seen by each
 glass sample
- <u>Record</u> Hohlraum <u>self</u>
 <u>emission</u> on <u>Streak</u>
 <u>Camera</u>
- Should observe glass
 blanking in sequence

Summary

- Two Background effects:
 —<u>Self Emission</u>
 - -Drive Thomson Scattering
- We <u>know how to assess</u> these initial results suggest this problem is <u>manageable</u>
- Blanking is caused by x-ray irradiation of the blast shield
- This problem looks more <u>challenging</u>
- •We need more data:
 - -Blanking limits for different glasses
 - -X-ray flux measurements along relevant lines of sight

