A Neutron Temporal Diagnostic for High-Performance DT Cryo Implosions on OMEGA

C. Stoeckl University of Rochester Laboratory for Laser Energetics NIF Diagnostic Workshop Los Alamos National Laboratory 6–8 October 2015

A new neutron temporal diagnostic (NTD) has been built for high-yield DT cryo implosions on OMEGA

- The neutron background and the large scintillator standoff (20 cm) required to clear the cryo shroud severely limits the quality of the data on the previous NTD system on high-performance DT cryo implosions
- The cyroNTD diagnostic was installed in port P11 close to the equator of the target chamber, allowing the scintillator to be inserted to 9 cm
- The ROSS streak camera for the cyroNTD is located in the OMEGA EP plenum for >100× improvement in the neutron shielding
- A ~16-m-long relay system was designed to transport the light from the scintillator to the photocathode with <20-ps group velocity dispersion
- With the standard 3-ns sweep window, the system has a measured impulse response of 40 ± 10 ps, which allows a 70-ps neutron pulse to be measured with 10% accuracy
- Preliminary measurements with the 1.5-ns sweep window show an impulse response of 25±10 ps, which allows a 50-ps neutron pulse to be measured with 10% accuracy

The NTD measures the neutron production rate and bang time

E23900a ROCHESTER

The neutron production rate is inferred from the unfolded scintillator signal

E23900b

The P11-NTD delivers the instrument performance required to support the current and future LLE cryogenic campaign

Performance metric	Performance status
Minimum burnwidth	50 ps
Bang-time measurement accuracy	±50 ps
Detectable DD neutron-yield range	5×10^9 to 1×10^{13}
Detectable DT neutron-yield range	5×10^{10} to 1×10^{15}

LLE

Cryo-NTD beam transport uses seven mirrors and four relay stages to cover 16.2 m from the scintillator to the ROSS

Group velocity dispersion is less than 20 ps over a 340- to 500-nm bandwidth

LL

The ROSS streak camera of the H5 NTD is placed close to the target chamber in a 10-cm-thick CH shield

Neutron noise was minimized by placing the streak camera ~11 m from the target with ~170 cm of shielding

The P11-NTD maintains excellent CCD image signal-to-noise ratios throughout the typical OMEGA DT neutron yield range

The P11-NTD provides superior data quality on highyield implosions compared to previous NTD diagnostics

LLE

	LLNL H5-NTD		LLE H5-NTD		LLE P11-NTD
	Cryo shot 69515 DT yield: 2.95×10^{13}		Cryo shot 76358 DT yield: 2.61×10^{13}		Cryo shot 76358 DT yield: 2.61 \times 10 ¹³
	Horizontal lineout		Horizontal lineout		Horizontal lineout
ADU's (×10 ⁵)	3 2 1 5 3 1 5 5 1 1 5 5 1 1 0 1000 2000 3000	ADU's (×10 ⁶)	10 5 0 Noise 0 2000 4000 6000	ADU's (×10 ⁵)	10 5 Noise 0 Signal 0 1000 2000 3000
			Time (ps)		

E23906

The P11-NTD leverages the power of the ROSS streak-camera platform to provide a well-characterized camera response

The impulse response of P11-NTD was measured using short laser pulses (10 ps) from OMEGA EP on an Au foil

- The high-intensity (>10¹⁷ W/cm²) laser pulse generates hard x rays with energies >200 keV
- These x rays penetrate through the heviment shielded nose cone and generate light similar to the high-energy neutrons
- The temporal width of the x-ray pulse is of the order of the width of the laser pulse

With the standard 3-ns sweep window, P11-NTD has a measured impulse response of 40±10 ps

- Using an intrinsic width of the x-ray signal, 25 ± 10 ps, the measured width of ~50 ps deconvolves to an impulse response of 40 ± 10 ps
- The absolute timing of P11-NTD is calibrated against NTD with an accuracy of ~50 ps

*FWHM: full width at half maximum

E24385

Preliminary measurements with a 1.5-ns sweep window show a shorter impulse response of 25±10 ps

 Using an intrinsic width of the x-ray signal, 25±10 ps, the measured width of 35±5 ps deconvolves to an impulse response of 25±10 ps

The new neutron temporal diagnostic provides an accurate measurement of the neutron production rate

• The NTD measurements show an earlier peak and burn truncation for the current cryo implosions

It is conceptually quite simple to transfer the P11-NTD design for implementation on the NIF

- The ~10⁴× larger yields on the NIF will require significantly more shielding
 - An additional 1 m of concrete or equivalent compared to P11-NTD is probably necessary
- An ~20-m-long optical relay system could transport the light outside the 2-m-thick bio-shield
- With a typical neutron production width of ~150 ps for sub-ignition experiments on the NIF, the time-resolution requirements would be relaxed compared to OMEGA
- The impulse response of a NIF-NTD could be calibrated *in-situ* using the NIF/ARC short-pulse capability
- A project has been established in Prof. Petrasso's group at MIT to evaluate designs for a NTD on the NIF (Brandon Lahmann, Ph.D. student)
- A NTD-like setup is being installed on LLE's short-pulse Multi-Terawatt (MTW) Laser System, which can be used to qualify new scintillator materials and calibration strategies

The OMEGA Target Bay section includes the scintillatortransport mechanism, zoom-optics assembly, and image-relay hardware

E23903

The scintillator is placed inside a telescoping mechanism re-entrant into the target chamber

UR

The final image relay section includes focusing optics, a remote-controlled filter wheel, and the ROSS streak camera

