Compact DD-n spectrometer for Yield, T_i , ρR & symmetry at Z, OMEGA, NIF, and for Discovery Science

MIT October 2015

Compact DD-n spectrometers enable multiple views of an implosion for symmetry studies of yield, pR, ...

Collaborators

<u>MIT</u>

- W. Han*
- L. Milanese*,1
- F. Seguin
- B. Lahmann*
- M. Gatu Johnson
- C. Waugh
- H. Sio*
- N. Kabadi*
- C. Wink*
- G. Sutcliffe*
- J. Rojas-Herrera*
- A. Birkel
- J. Frenje
- C.K. Li
 - R. Petrasso

<u>SNL</u>

- K. Hahn
- B. Jones
- G. Rochau

<u>LLNL</u>

- R. Bionta
- D. Casey
- C. Yeamans

<u>U of R – LLE</u>

- V.Yu. Glebov
 - J. Knauer
 - T.C. Sangster
 - C. Stoeckl

*Students ¹Currently at Imperial College, London

- <u>Motivation</u> for absolute spectral DD neutron measurements
- <u>Method</u>: n-p recoil with CR-39 detectors and "coincidence" noise reduction
- Initial tests of concept elements:
 - a. Measured spectrum of accelerator-generated neutrons without using "coincidence" noise reduction
 - b. Collect and evaluate n-p test data on CR-39 during Z shots of 14-18 Sept 2015
 - c. On-going tests of coincidence counting at MIT Accelerator Facility:
 - (i) Signal only tests
 - (ii) Signal and 2.5 MeV neutron noise background together
 - (iii) Monte-Carlo simulations of signal and background
 - (iv) Determination of spectrometer sensitivity, characteristics
 - (v) Fully integrated test of all spectrometer elements
- <u>Future</u>: Field at Z, Omega, and the NIF.

A DD-n recoil spectrometer can be made using a passive CR-39 nuclear track detector

CR-39 records recoil protons from n,p interactions in a CH foil

A DD-n recoil spectrometer can be made using a passive CR-39 nuclear track detector

CR-39 records recoil protons from n,p interactions in a CH foil

MIT October 2015

Using this geometry, an estimated response to monoenergetic 2.45-MeV neutrons is calculated

- <u>Motivation</u> for absolute spectral DD neutron measurements
- <u>Method</u>: n-p recoil with CR-39 detectors and "coincidence" noise reduction
- Initial tests of concept elements:
 - a. Measured spectrum of accelerator-generated neutrons without using "coincidence" noise reduction
 - b. Collect and evaluate n-p test data on CR-39 during Z shots of 14-18 Sept 2015
 - c. On-going tests of coincidence counting at MIT Accelerator Facility:
 - (i) Signal only tests
 - (ii) Signal and 2.5 MeV neutron noise background together
 - (iii) Monte-Carlo simulations of signal and background
 - (iv) Determination of spectrometer sensitivity, characteristics
 - (v) Fully integrated test of all spectrometer elements
- <u>Future</u>: Field at Z, Omega, and the NIF.

A proof-of-principle test of a prototype was carried out on the MIT accelerator without using coincidence noise reduction*

*Seguin et al., Bull. Am. Phys. Soc. (2012)

Tests utilized DD-n from fusion reactions in the accelerator target

 $D + D \rightarrow {}^{3}\text{He} + n (2.45 \text{ MeV})$ $D + D \rightarrow T + p (3.01 \text{ MeV})$

SNL Deuterated Erbium target

140-keV

Spectrometer prototype DD-n

SBD

The power of the associated particle method

ctober

The measured spectrum shape agrees well with expectations

The measured detection efficiency provides a well-defined quantitative sensitivity

- <u>Motivation</u> for absolute spectral DD neutron measurements
- <u>Method</u>: n-p recoil with CR-39 detectors and "coincidence" noise reduction
- Initial tests of concept elements:
 - a. Measured spectrum of accelerator-generated neutrons without using "coincidence" noise reduction
 - b. Collect and evaluate n-p test data on CR-39 during Z shots of 14-18 Sept 2015
 - c. On-going tests of coincidence counting at MIT Accelerator Facility:
 - (i) Signal only tests
 - (ii) Signal and 2.5 MeV neutron noise background together
 - (iii) Monte-Carlo simulations of signal and background
 - (iv) Determination of spectrometer sensitivity, characteristics
 - (v) Fully integrated test of all spectrometer elements
- <u>Future</u>: Field at Z, Omega, and the NIF.

Test data with simple CR-39 packages were acquired on 14-18 September 2015 during MagLIF shots 2849-52 (DD-n yields ~ 3x10¹⁰ – 2x10¹²)

Data about to be analyzed

MIT October 2015

Test data with simple CR-39 packages were acquired on 14-18 September 2015 during MagLIF shots 2849-52 (DD-n yields ~ 3x10¹⁰ – 2x10¹²)

- <u>Motivation</u> for absolute spectral DD neutron measurements
- <u>Method</u>: n-p recoil with CR-39 detectors and "coincidence" noise reduction
- Initial tests of concept elements:
 - a. Measured spectrum of accelerator-generated neutrons without using "coincidence" noise reduction
 - b. Collect and evaluate n-p test data on CR-39 during Z shots of 14-18 Sept 2015
 - c. On-going tests of coincidence counting at MIT Accelerator Facility:
 - (i) Signal only tests
 - (ii) Signal and 2.5 MeV neutron noise background together
 - (iii) Monte-Carlo simulations of signal and background
 - (iv) Determination of spectrometer sensitivity, characteristics
 - (v) Fully integrated test of all spectrometer elements
- <u>Future</u>: Field at Z, Omega, and the NIF.

The Coincidence Counting Technique (CCT)* is used to eliminate neutron-induced noise (and "intrinsic" noise) in CR-39 track data

*D. T. Casey *et al.,* **RSI** (2011)

The Coincidence Counting Technique (CCT)* is used to eliminate neutron-induced noise (and "intrinsic" noise) in CR-39 track data

These tracks are <u>NOT</u> coincident in position, and are rejected as noise

*D. T. Casey et al., **RSI** (2011)

Tests of coincidence counting

are being conducted at the MIT Accelerator Facility

(i) Signal only tests using DD protons from MIT accelerator

First track etch before bulk etch:

Accelerator shot A2015091702

etch

Tests of coincidence counting

are being conducted at the MIT Accelerator Facility

(i) Signal only tests using DD protons from MIT accelerator

First track etch before bulk etch:

Second track etch after 52 μ m bulk etch:

Standard front-side analysis: 8533 protons counted

Standard front-side analysis: 8536 protons counted

CCT analysis: 8540 protons counted

Next steps include noise rejection tests using neutrons from our DD neutron generator

- (ii) Signal and 2.5 MeV neutron noise together (noise from DD-n generator)
- (iii) Monte-Carlo simulations of signal and background
- (iv) Determination of spectrometer sensitivity, characteristics
- (v) Fully integrated test of all spectrometer elements

Our DD and DT neutron sources can easily generate neutron fluences replicating conditions at 1e7-1e15 yield applicable to OMEGA, Z and NIF

- <u>Motivation</u> for absolute spectral DD neutron measurements
- <u>Method</u>: n-p recoil with CR-39 detectors and "coincidence" noise reduction
- Initial tests of concept elements:
 - a. Measured spectrum of accelerator-generated neutrons without using "coincidence" noise reduction
 - b. Collect and evaluate n-p test data on CR-39 during Z shots of 14-18 Sept 2015
 - c. On-going tests of coincidence counting at MIT Accelerator Facility:
 - (i) Signal only tests
 - (ii) Signal and 2.5 MeV neutron noise background together
 - (iii) Monte-Carlo simulations of signal and background
 - (iv) Determination of spectrometer sensitivity, characteristics
 - (v) Fully integrated test of all spectrometer elements
- <u>Future</u>: Field at Z, Omega, and the NIF

For programmatic and Discovery Science,

DD-n spectrometers will be fielded at:

- Z
- OMEGA
- NIF

This will offer a great opportunity for MIT PhD students --Harry Han, Lucio Milanese, Graeme Sutcliffe, ... -- to be directly involved with science on these premier HED facilities

The Coincidence Counting Technique (CCT)* for eliminating noise in CR-39 track detectors

The CCT is used to:

- discriminate between protoninduced and neutron-induced tracks
- reduce the intrinsic and neutron-induced noise by a factor of 100

*D. T. Casey *et al., RSI* (2011)

We can scale the prototype test results to estimate performance with a plausible NIF implosion

26

*Simulated by M. Gatu Johnson using MCNP

A neutron generator will be used to expose CR-39 to the same level of neutron fluence of the Z experiments at SNL

The signal noise coming from the neutrons will be significantly reduced by employing the coincidence counting technique