DE LA RECHERCHE À L'INDUSTRIE

UV timing fiducial for LMJ x-ray streak cameras

C. Zuber, JP. Bouvet, W. Duchastenier

LMJ XRSC - timing fiducial

2016.06.29-30

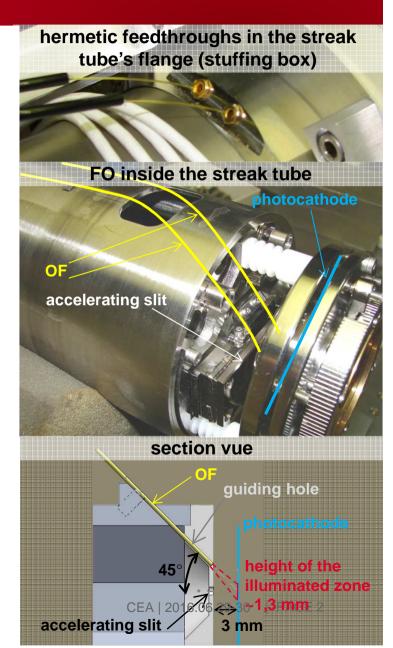
www.cea.fr

FIRST STEPS

System requirements

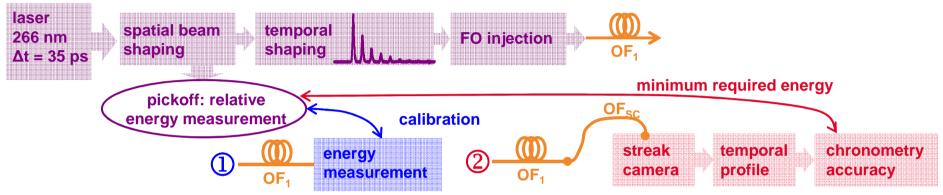
- 2 timing fiducial signals:
 - chronometry: timing of the acquired image with 1 pulse
 - linearity:

in situ calibration of the sweep speed and checking of EM disturbance with 25 pulses in 2, 5, 10 or 25 ns (12.5, 5, 2.5 and 1 GHz)


Temporal precision: ptp: **100 ps ptp needed**, 60 ps ptp wished rms: **17 ps rms needed**, 10 ps rms wished

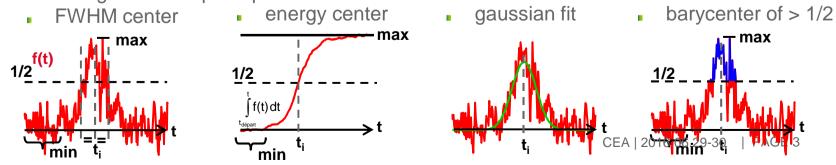
Consequences for the SC

Conversion of the UV fiducial by the x-ray photocathode in **reflection mode**


→ insertion of 2 UV optical fibers in the streak tube

OF step index, silica, 400 µm core

Experimental setup

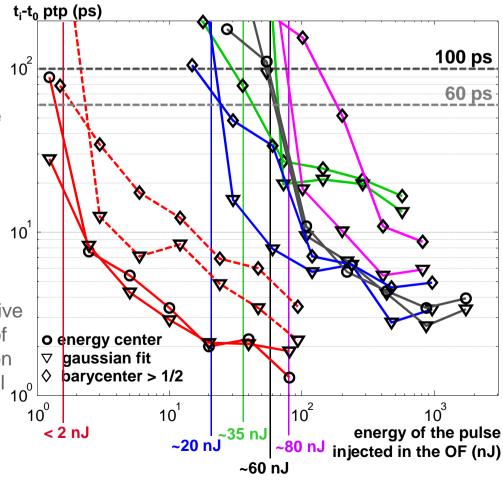


Measurement in 2 steps:

- ① calibration of energy pickoff
- **2** chronometry accuracy: $t_0 = 1^{st}$ pulse

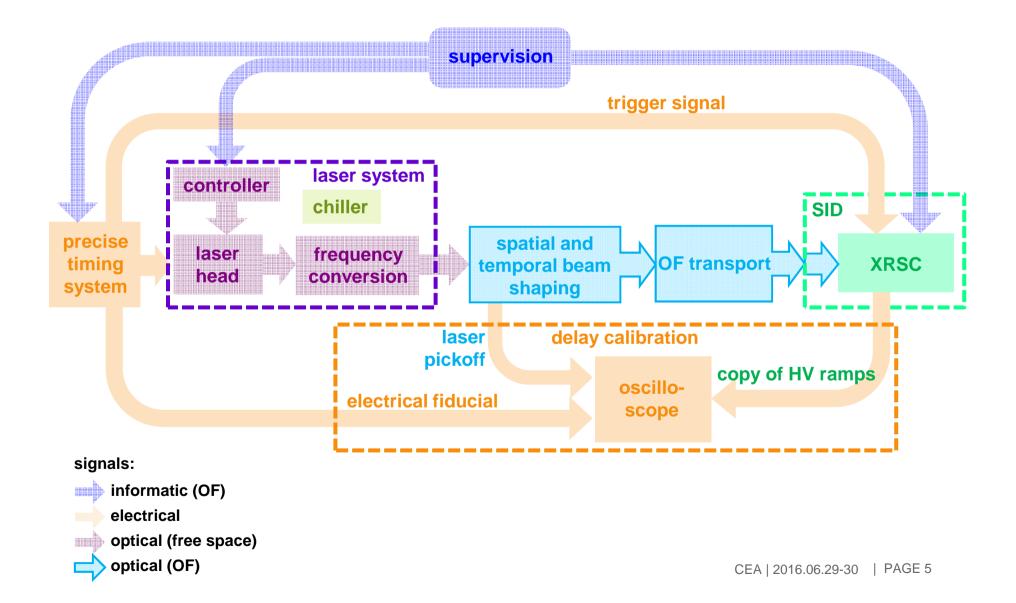
the chronometry accuracy Δt_i for the ith pulse is overvalued by the dispersion between the n estimates of t_i - t_0 (contributions of Δt_0 and sweep speed repetitivity)

Processing of the temporal profiles:

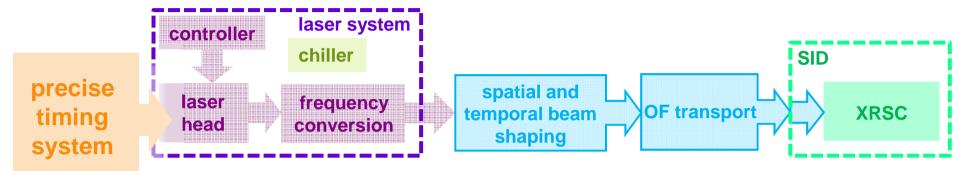

Cea

PHOTOMETRIC REQUIREMENT ESTIMATION

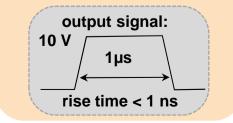
5 photocathodes

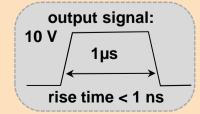

- The minimum required energy depends on the PC substrate and photosensitive compound
- A few 10 nJ injected in the streak camera's OF is sufficient to determine the pulse timing on the temporal profile with the required accuracy
- More energy injected in the streak camera's OF will allow to allot temporal accuracy to the other components of the UV timing fiducial system
- A **mixed PC**, with different photosensitive compounds in the center (conversion of the x-rays in transmission mode) and on the edges (conversion of the UV fiducial in reflectionmode) could be realized by depositing the photocathode layers through a mask

70 nm Au on 12 μm Be 500 nm Csl + 23 nm Al on 480 nm lexan (Luxel) 15 nm Al on 200 nm polystyrène 70 nm Au on 200 nm polystyrène 500 nm Csl on 12 μm Be



DESCRIPTION OF THE TIMING FIDUCIAL SYSTEM

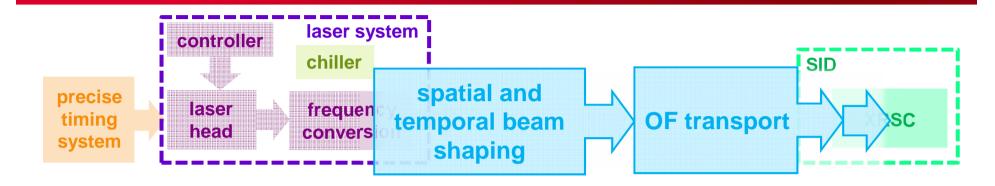




Location: shielded room 2U 19" rack Output: 2 - 4 channels Jitter: 11 ps rms COTS, 15k€ Cable length: 30-40 m to the laser head

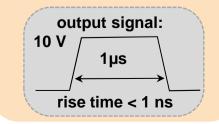
CEA | 2016.06.29-30 | PAGE 6

CQA**DESCRIPTION OF THE TIMING FIDUCIAL SYSTEM** laser system controller SID chiller precise spatial and **OF transport XRSC** timina nporal beam laser system frequency saping head conversion ۰Ô Location: in the experience hall, on an optical table near each XRSC Location: shielded room Max. volume: 80*35*25 cm³ 2U 19" rack Laser characteristics: **Output: 2 - 4 channels** Nd:YAG Jitter: 11 ps rms single shot operation COTS, 15k€ pulse duration < 50 ps FWHM Cable length: 30-40 m frequency conversion to 4ω to the laser head → 40 µJ at 266 nm Jitter <10 ps rms



COTS ?

CEA | 2016.06.29-30 | PAGE 7


C23

DESCRIPTION OF THE TIMING FIDUCIAL SYSTEM

Location: shielded room 2U 19" rack Output: 2 - 4 channels Jitter: 11 ps rms COTS, 15k€ Cable length: 30-40 m to the laser head

Location: in the experience hall, on an optical table near each XRSC Max. volume: 80*35*25 cm³ Laser characteristics: Nd:YAG single shot operation pulse duration < 50 ps FWHM frequency conversion to 4ω → 40 µJ at 266 nm Jitter <10 ps rms COTS ? Location: in the experience hall, on an optical table near each XRSC

Spatial beam shaping:

injection in temporal beam shaping injection in transport OF

Temporal beam shaping: 3 channels:

1. pickoff for delay calibration

2. chronometry signal (1 pulse)

3. linearity signal (comb of 25 pulses)

 \rightarrow 4 different linearity signals for the 4 timebases (12.5, 5, 2.5 and 1 GHz)

Transport optical fiber:

Silica ~80 dB/km transmission at 266 nm 4m < length < 8m (6m inside the SID)

EXPECTED PERFORMANCES

Accuracy

Prior calibration of temporal beam shaping

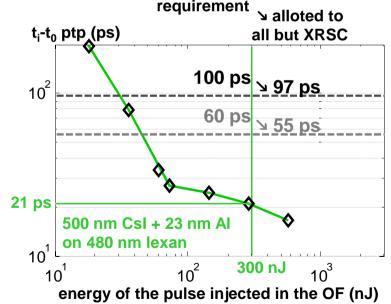
 reduction of its contribution to the accuracy to < 5 ps ptp (= 1 ps rms)

 Global delay calibration with the validation shot a few minutes before each physics shot

 reduction of wander and thermal contributions

 Streak camera contribution

 estimated to 21 ps (= 3.5 ps rms) ptp with a Csl Pk
 Other contributors → ~ 5 ps rms?


$$\sigma_{A} = \sqrt{1^{2} + 3.5^{2} + 5^{2}} = 6.2ps$$

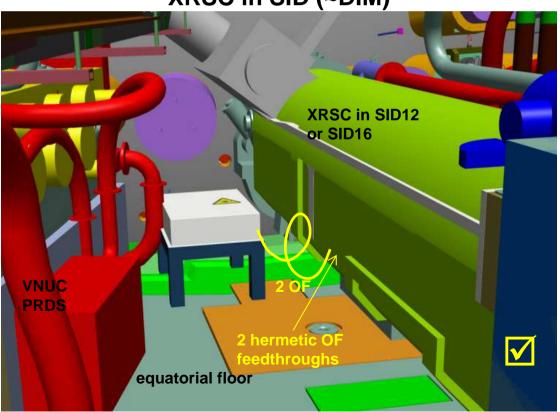
Jitter

Precise timing system < 11 ps rms

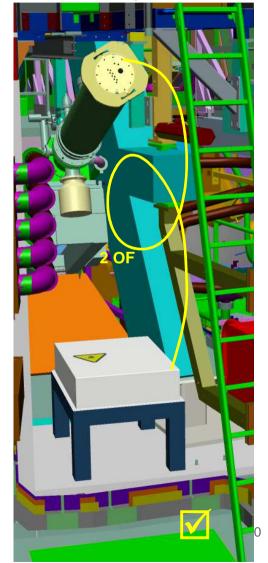
Laser < 10 ps rms

$$\sigma_{J} = \sqrt{10^{2} + 11^{2}} = 14.9 \text{ps}$$

$$\sigma_{tot} = \sqrt{6.2^{2} + 14.9^{2}} = 16.1 \text{ps} < 17 \text{ps}$$



INTEGRATION IN LMJ'S EXPERIMENTAL HALL


Preliminary study

- Laser + spatial and temporal beam shaping and transport OF injection on an optical table
- < 2m OF between this table and the SID / MS</p>

XRSC in SID (~DIM)

XRSC w/o SID (behind DMX)

1- from the XRSC's point of vue

Insertion of 2 OF for the conversion of UV timing fiducial in reflection mode
 Photometric estimation with 35-ps long pulses

2- system architecture definition

- OTS laser ?
- Preliminary validation of mechanical integration in the EH
- Performances estimation:
 - photometric: timing accuracy alloting
 - jitter
 - → accuracy + jitter < requirement ☺</p>

3- first steps of prototyping

Spatial and temporal beam shaping studies
 Laser performances estimation