Imaging γ**-ray**'s at the NIF

CEA-DOE Diagnostics Workshop

29-30 June 2016, LLE, Univ. of Rochester, Rochester, NY

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Summary

- NIF plans to implement imaging of gammas along the (90,315) line-of-sight in FY-17.
- Gammas from ¹²C (n,n'g) reactions provide quantitative information on the distribution of carbon in layered implosions using CH and HDC ablator materials.
- Scoping activities have taken place and initial indications are that imaging carbon is viable on layered shots with DT yields in the low 10¹⁵'s.
- A concept for implementation is almost complete and Implementation will principally involve reconfiguring the NI camera table by adding a gamma scintillator and extra imaging channels.

γ-ray imaging uses neutrons from the source to probe the carbon ablator

This complements the primary and down-scattered neutron data.

γ-ray images should be larger than the down-scattered image.

Simulated images

Courtesy: Charlie Cerjan

Symmetric dipole excitation — equal emission in the forward and backward directions

The full shell assembly will contribute to the image, unlike in downscattered images.

Penumbral apertures are needed at current yields...

- For 26 cm TCC pinholes at least 5 are needed for decent images at 10¹⁵ neutrons. Even worse as pinhole is moved away from TCC.
- Penumbras are needed to improve SNR

To ensure DQE, pixelated LYSO was selected^{*} as the converter...

Scintillator	Formula	Density	Light	Decays	Emission	Refractive	Atten.	%Int of	Light
		(g/cm ³)	Yield	(ns)	Max(nm)	Index	@	4.44MeV	Yield
			(ph/Mev)				4.44MeV	in	In 100ns
							(cm ⁻¹)	(2cm)	(ph/MeV)
BGO	$Bi_4Ge_3O_{12}$	7.13	8,200	300	480	2.15	0.276	42	2,300
LSO	Lu ₂ SiO ₅ :Ce	7.4	27,000	40	420	1.82	0.278	43	24,900
YSO	Y ₂ SiO ₅ :Ce	4.45	9,200	42	420	1.8	0.144	25	21,500
LYSO	Lu _{1.8} Y _{0.2} SiO ₅ :Ce	7.11	32,000	41	420	1.81	0.264	41	29,200

BGO

- Slow Decay
- FWHM = 1.1 mm
- Low light Output

YSO

- Low Density
- FWHM = 1.7mm
- Low light output

LYSO

- Fast
- High light output
- FWHM = 1.2mm
- Lutetium decay
 negligible

A proto-type was fielded^{*} at Omega, collecting images of hot-e bremsstrauhlung in CH implosions...

LLNL-PRES-XXXXX

^{*}D. Lemieux, Univ. of Arizona

Concept for upgrading the (90,315) camera table to allow γ-ray imaging...

At this point we are costing out the project and developing requirements

- Image Resolution 10 µm
- FOV at Source—?
- Minimum Gate Width—10 ns
- Gate Rise Time—1 ns
- Gate Fall Time—1 ns
- # Frames—2?

Possible issues that still need to be addressed

- γ production in the Au of the Hohlraum or NIS pinhole array
 - Some MCNP modeling may be useful.
- Possible need for new pinhole array
 - Either for reconstruction, field of view, etc.

Images of gammas were first collected in 2015 using sub-scale Symcaps and the NIF NI system

Image gated ± 38 ns around γ flight time

13-17 MeV neutron image

Image strength challenged reconstruction, but demonstrated viability...

Possible sources of the radiation include

- 1. ${}^{12}C(n,n'){}^{12}C^*$ 4.4 MeV. Primary signal
- 2. T+D → ⁵He^{*} 16.7 MeV 100 x weaker
- 3. $(n,n'\gamma) 1 2$ MeV? Background scattering sources
 - 1. Within penumbral images:
 - 1. TMP, Blast shield, aperture walls
 - 2. Outside penumbral images:
 - 1. NIS blast shield, snout etc...
- Hot-electron bremsstrahlung in TMP and CH shell < 1 MeV
 - 1. Likely very weak.

All, but source 1 seems unlikely to contribute much signal in the penumbral regions.

First gamma image from a layered CH implosion N160602...

Camera 1: 6-12 MeV

Camera 2: γ-image

Au-lined DU hohl (sc672), T-1 (175 um) CH capsule 0.6 mg/cc 4He hohlraum fill 3-shock high-foot drive, 1.54 MJ, 425 TW

Y (13-15) :	1.65e+15			
T_ion:	3.45 keV			
dsr:	3.9%			

Recon by LANL (Volegov, Wilde and Wilson)

Position: (52, -163) Size @17%: (278,217) P0 = 129 P2/P0 = -16%

EMML, stop @
$$\Delta\chi 2/\chi 2 < 10^{-4}$$

x, mm

Abel inversion
$$(\rho, \phi, z) = S_{left}(\rho, z) \frac{1 - sin\phi}{2} + S_{right}(\rho, z) \frac{1 + sin\phi}{2}$$

N160602: 3D rendering of reconstructed gamma source

Summary

- NIF plans to implement imaging of gammas along the (90,315) line-of-sight in FY-17.
- Gammas from ¹²C (n,n'g) reactions provide quantitative information on the distribution of carbon in layered implosions using CH and HDC ablator materials.
- Scoping activities have taken place and initial indications are that imaging carbon is viable on layered shots with DT yields in the low 10¹⁵'s.
- A concept for implementation is almost complete and Implementation will principally involve reconfiguring the NI camera table by adding a gamma scintillator and extra imaging channels.

The scattering is more strongly directed forward and backward.

Fig. 4. Differential cross section for production of 4.43-MeV gamma rays by 14.1-MeV neutrons.

Images will receive contributions from the entire shell!

J. Benveniste, et al., Nuclear Physics 19, 448-452 (1960).

Interpreting the images will depend on our understanding of the (n,n'γ) scattering.

Reaction

$$C^{12}(n,n')C^{12^*} \rightarrow C^{12} + \gamma(4.43 \text{ MeV})$$

• Angular Distribution Fit Function (θ wrt neutron direction)

$$\sigma(\theta) = (13.3 \pm 0.6) + (40.0 \pm 4.7) \cos^2 \theta - (34.1 \pm 5.1) \cos^4 \theta$$
 in mb/sr

Integrated Cross-section

 $\sigma_{n,n'\gamma}(4.43 \text{ MeV}) = 249 \pm 28 \text{ mb}$

J. Benveniste, et al., Nuclear Physics 19, 448-452 (1960).

We are looking at upgrading the existing NIS to allow γ-ray imaging without sacrificing images.

n: 13-15 MeV n: 6-12 MeV

Can the different image regions inform the spectrum?

