A New Microchannel-Plate Neutron Time-of-Flight Detector

V. Yu. Glebov University of Rochester Laboratory for Laser Energetics CEA–NNSA Joint Diagnostic Meeting Rochester, NY 29–30 June 2016

A new microchannel-plate neutron time-of-flight (MCP nTOF) detector was developed and tested on OMEGA

- The MCP nTOF has only a MCP photomultiplier tube without a scintillator; the signal is produced as a result of direct neutron interaction with the MCP
- Eliminating the scintillator removes the scintillator decay from the instrument response function (IRF) and makes the detector faster; the MCP nTOF is the fastest nTOF detector currently in use on OMEGA
- The MCP nTOF is practically insensitive to DD neutrons and can be used only for yield and ion-temperature (T_i) measurements in high-yield DT shots
- The MCP nTOF was tested 5.3 m from the target, but will be permanently moved to 15.9 m to improve T_i measurement precision

The MCP nTOF consists of a thin Al housing with a Photek* PMT140 photomultiplier

A 10-mm-thick lead plate can be attached in the front

Photek PMT140 single-stage MCP

- Hamamatsu MCP parameters
 - effective diameter: 42 mm
 - pore diameter: 10 μ m
 - pore pitch: 12 μ m
 - thickness: 0.5 mm

UR

E25279

The MCP nTOF was tested on OMEGA at 5.3 m from the target with and without lead shielding

The MCP nTOF is practically insensitive to DD neutrons

- The typical MCP lead glass* is 48% Pb, 25% O, and 18% Si
- Neutrons produced charge particles through (n, p) and (n, α) reactions
- For Pb, O, and Si threshold of proton and alpha production are above 2.5 MeV

*S. S. Medley and R. Persing, Rev. Sci. Instrum. <u>52</u>, 1463 (1981).

E25281a

The MCP nTOF signal is fitted by a convolution of a Gaussian and an exponential decay function

E25282

^{*}T. J. Murphy et al., Rev. Sci. Instrum <u>86</u>, 610 (1997).

The current configuration of the MCP nTOF is the fastest nTOF detector on OMEGA

*CVD: chemical-vapor deposition **FWHM: full width at half maximum

The yield inferred from the MCP nTOF was calibrated against the Cu activation diagnostic

All data are from the implosion of glass shell targets filled with DT.

The IRF of the MCP nTOF was adjusted to match the *T*_i of the 15.8-m nTOF detector

The MCP nTOF is a promising detector for *T*_i measurements.

In May 2016 the MCP nTOF was permanently relocated to 15.9 m from target chamber center (TCC) in the P4F line of sight

OMEGA Target Bay

MCP nTOF installed

A new microchannel-plate neutron time-of-flight (MCP nTOF) detector was developed and tested on OMEGA

- The MCP nTOF has only a MCP photomultiplier tube without a scintillator; the signal is produced as a result of direct neutron interaction with the MCP
- Eliminating the scintillator removes the scintillator decay from the instrument response function (IRF) and makes the detector faster; the MCP nTOF is the fastest nTOF detector currently in use on OMEGA
- The MCP nTOF is practically insensitive to DD neutrons and can be used only for yield and ion-temperature (T_i) measurements in high-yield DT shots
- The MCP nTOF was tested 5.3 m from the target, but will be permanently moved to 15.9 m to improve T_i measurement precision

