neutron maging

Extracting "dark matter" volume density information at NIF

P. Volegov, C. Danly, F. Merrill, D. Wilson, C. Wilde D. Casey, D. Fittinghoff, G. Grim

EST.1943

CEA-NNSA Joint Diagnostic Meeting June 29-30, 2016

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Outline

- Cold fuel density reconstruction from primary and scattered neutron images
 - Single scatter model
 - Experimental data reconstruction
 - 3D reconstruction
- Gamma images analysis and reconstruction
 - Noise analysis
 - Experimental data reconstruction
 - Statistical tests

NIS: Primary and down-scattered images

Can we extract cold-fuel volume density from those images?

THEORY/ALGORITHM

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Down-Scattered Image Formation

 $A(\mathbf{r},\mathbf{r}\uparrow\mathbf{f}',E)/|\mathbf{r}-\mathbf{r}'|\uparrow 2 dE'd\uparrow 3 r' dE$

Down-scattered image projection kernel $\Phi(\mathbf{r}, \mathbf{p})$ for a point primary source

MCNP SIMULATION

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

MCNP Simulation

<u>"Hot spot" (magenta):</u> radius = 25 μ m, material 50%D + 50%T, density 25 g/cc, emission = 1.TotalYield/Volume/4 π

DT shell (blue): thickness = 20 µm, material 50%D + 50%T, density 350 g/cc, emission =0

<u>CH shell (cyan):</u> thickness = 55 μ m, material 50%C + 50%H , density tapering from 150g/cc at 45 μ m to 30g/cc at 100 μ m, emission =0

Total mass of DT = 112 µg

Density reconstruction

Total reconstructed mass of DT (inside 30% level) = 114 μ g (exact value 112 μ g)

EXPERIMENTAL DATA RECONSTRUCTION

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

<u>N160120</u>

	P ₀ (μm)	P ₂ /P ₀ (%)	P ₃ /P ₀ (%)	P ₄ /P ₀ (%)
Primary (1317 MeV)	33.40	-23%	-6%	1%
Down-scattered (612 MeV)	49.58	-12%	-2%	2%

Attempt to account for L-R asymmetry

The method requires inferring 3D distribution of the primary source.

For equatorial views spherical harmonics decomposition reduces to polar Fourier transform:

$$S(\rho,\varphi,z) = \sum m = -N\uparrow N \implies S \downarrow i \ (\rho,z) e\uparrow im\varphi$$

Given one projection direction this results in first order polar Fourier transform:

 $S(\rho,\varphi,z) == S \downarrow l(\rho,z) 1 - \sin \phi / 2 + S \downarrow r$ (\rho,z) 1 + \sin\phi / 2

N160120: Reconstructed "hot spot"

N160120: Reconstructed density

z, um

Reconstructed density with overlaid reconstructed primary contour.

Reconstructed Mass: 313 µg (total), 174 µg (inside 30% level)

UNCLASSIFIED

S(x,y,z) 3D RECONSTRUCTION

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

LLNL: Brian's "Turkey shot" 3D simulation

60

40

20

0 -20

-40

-60

-80

-100 -100

-50

x (um)

y (um)

3D projections

Primary

Down-scattered

Reconstructed primary source: YZ-slices (i.e. almost orthogonal to SPECE LOS)

Reconstructed primary source

Reconstructed density: YZ-slices (i.e. almost orthogonal to SPECE LOS), color map is

Density profiles for representative YZ slices

Rho-R as a function of polar angle

Mass: 258 µg (total), 187 µg (inside 30% level)

Down-scattered image projection kernels $\Phi(\mathbf{r}, \mathbf{p})$ for the reconstructed primary so

Conclusion & Future Plans

- 1. A method to reconstruct cold fuel density using a single scattering model has been developed and validated against MCNP model
- 2. The method provides density in *physical units*, i.e. g/cc
- 3. The method applied to the experimental data provided physically plausible and interesting results
- 4. The method requires inferring 3D distribution of the primary source. Given one projection direction this results in assuming axial symmetry of the reconstructed objects. This could be deceiving for reconstruction of a fuel assembly with this large 3D structure. Multiple views will alleviate this restriction and improve the density reconstruction
- 5. Source localization, i.e. array characterization, is of paramount importance

Nearest goals:

- 1. Extensively validate the technique using both simulation and experimental data
- 2. Develop an iterative procedure to account for the attenuation terms
- 3. Combine with polar x-ray images in attempt to account for low order asymmetry

UNCLASSIFIED

Thank you! and... Questions?

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

neutron maging

Preliminary analysis of N160602 Gamma Ray Imaging

P-23 Advanced Imaging Team, LANL

Carl Wilde, Petr Volegov, Doug Wilson, Frank Merrill Gary Grim, David Fittinghoff

June 21, 2016

Neutron images provide the shape and size of the imploded fuel at stagnation. Gamma imaging can measure the ablator location.

Neutron images are used to diagnose NIF implosions. Temporal separation of neutrons after 28 m drift results in ability to collect two neutron images: Primary (13-17 MeV), Down-Scattered (10-12 MeV)

-UR-15-2

Gamma Ray Imaging

At yields >10¹⁶ neutrons and sufficient remaining ablator mass there should be enough $C(n,\gamma)$ reactions to form images of the ablator location.

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Noise analysis of N160602 data (260 micron pixel) indicates higher signal level than expected

No	Background (1,2)	Penumbra (3,4,5)
Mean	3730	14100
STD	1550	2840
SNR	2.4	5.0
<n<sub>y/pixel></n<sub>	~6	~25

Back of the envelope:

 $N_{\gamma}\Delta S = \frac{Y_{\gamma}\Delta S}{4\pi R^{2}}$ $Y_{n} \approx 1.6 \times 10^{15} => Y_{\gamma} \approx 8 \times 10^{12} \text{ into } 4\pi$ $0.26 \text{ mm pixel } @ 28 \text{ m} => \sim 55 \text{ gammas per pixel}$ $\sim 15\% \text{ DQE (plastic scintillator)}$ $=> \sim 8 \text{ gamma per pixel } (\times 2 + ???)$

GRH measurement of C-12 gamma would help interpret this data

N160602: Expectation Maximization

Position: (52, -163) Size @17%: (278,217) P0 = 129 P2/P0 = -16%

EMML, stop @ $\Delta \chi 2/\chi 2 < 10^{-4}$

N160602-001-999_C02_260u

x (mm)

read Imaging

N160602: 3D rendering of reconstructed gamma source

N160602: Generalized Expectation Maximization with Gibbs prior

N160602: Abel inversion

Use a simple shell model to simulate the gamma emission

- 80 μm inner diameter, 100 μm outer diameter shell source of gammas
- Signal levels are adjusted to show scaling of N160602

Los Alamos National Laboratory

Simulated images using SNR similar to observed data (N160602) shows indications of the inner shell Simulated Gamma Image

x, mm

Abel inversion

Simulated images ~3 times the signal of N160602

Abel inversion

Stat Tests: Abel inversion

Stat Tests: "Best" and "worst" cases

Simulated images with expected signal for N160602 (0.5% Yn)

Reconstructed P0 = 55 μ m

Abel inversion

Stat test: Expected gamma statistics

Stat test: Abel inversion

Best and worst case 3 D visualizations for expected gamma SNR

Going forward

- Need to identify where the elevated signal levels are coming from
- Need to characterize penumbral apertures for gammas
 - Previous work (N. Guler) showed that reconstructions of the neutron images using the nominal design of the apertures do not agree with pinhole reconstructions
- New aperture array with more penumbral apertures would increase signal strength and allow better reconstructions
- Fabricate a new detector (LYSO based) to increase quantum efficiency

New aperture array

Thank you! Questions?

Our Latest Publications:

Neutron Imaging System: Reconstruction Algorithm: Array Characterization: NXI at Omega: NIF CNXI concept: NIF CNXI detector pack: Coregistration technique: 3D reconstruction:

Merrill, et al. Rev. Sci. Instrum. 83, 10D317 (2012) Volegov, et al. Rev. Sci. Instrum. 85, 023508 (2014) Volegov, et al. Rev. Sci. Instrum. 85, 123506 (2014) Danly, et al. Rev. Sci. Instrum. 86, 043503 (2015) Merrill, et al. Rev. Sci. Instrum. 86, 11E614 (2014) Simpson, et al. Rev. Sci Instrum. 86, 125112 (2015) Danly, et al. Rev. Sci. Instrum 83, 10E522 (2012) Volegov, et al. J. Appl. Phys. 118, 205903 (2015)

Density reconstruction:	Forthcoming
3D Spherical Harmonics:	Forthcoming
Gamma images reconstruction:	Forthcoming

