DE LA RECHERCHE À L'INDUSTRIE

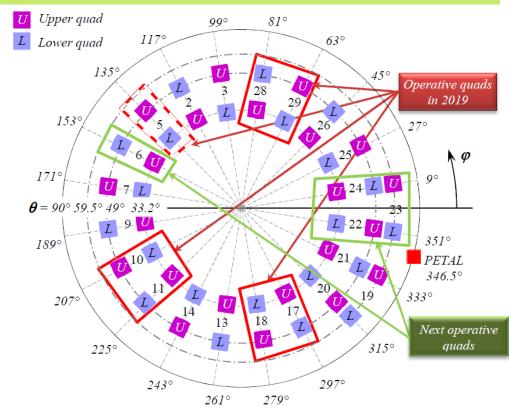
www.cea.fr

LMJ - DP14 Neutron Pack Calibration

O. Landoas, F. Philippe, S. Liberatore
CEA – DAM – DIF, F-91297 ARPAJON, FRANCE

CEA-NNSA Joint Diagnostics Meeting | Olivier LANDOAS

June 28th – 29th, 2016

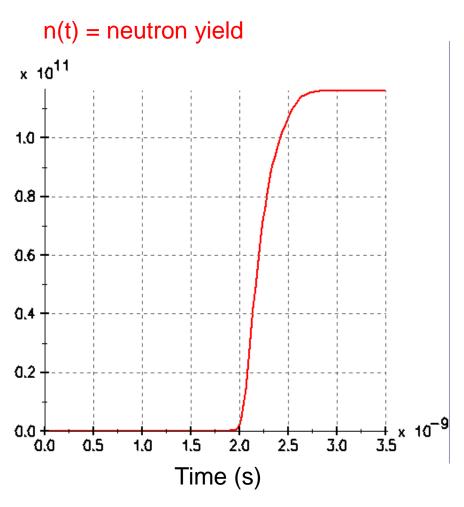

In 2019, first implosion of D₂ capsule with neutron production

At least 7 laser chains will be used for the implosion of D₂ capsule

Irradiation geometry of LMJ quads and PETAL beam.

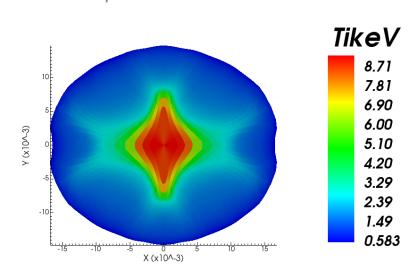
The operative quads at the beginning of 2019 are indicated in red (Bundles # 5, 10, 11, 17, 18, 28 and 29).

The next operative quads are indicated in green (Bundles # 6, 22, 23 and 24)



Beam Port	θ	φ	Beam Port	θ	φ	Beam Port	θ	φ	Beam Port	θ	φ
Quads operative in 2019											
28U	33.2°	81°	28L	131°	81°	29U	49°	63°	29L	146.8°	63°
17U	33.2°	297°	17L	131°	297°	18U	49°	279°	18L	146.8°	279°
10U	49°	207°	10L	146.8°	207°	11U	33.2°	225°	11L	131°	225°
5U	49°	135°	5L	146.8°	135°	PETAL	90°	346.5°			

Spherical coordinates of beam ports



Expected Neutron Yield is about 10¹¹ D₂ neutrons

 $Ti_{max} = 1.85 \text{ keV}$

Map of the Ti @ t = 2.25 ns

Neutron yield estimation: 1.16 10¹¹ with 2D simulation

1.20 10¹¹ with 1D simulation

LMJ DP14 : Neutron pack

Goals:

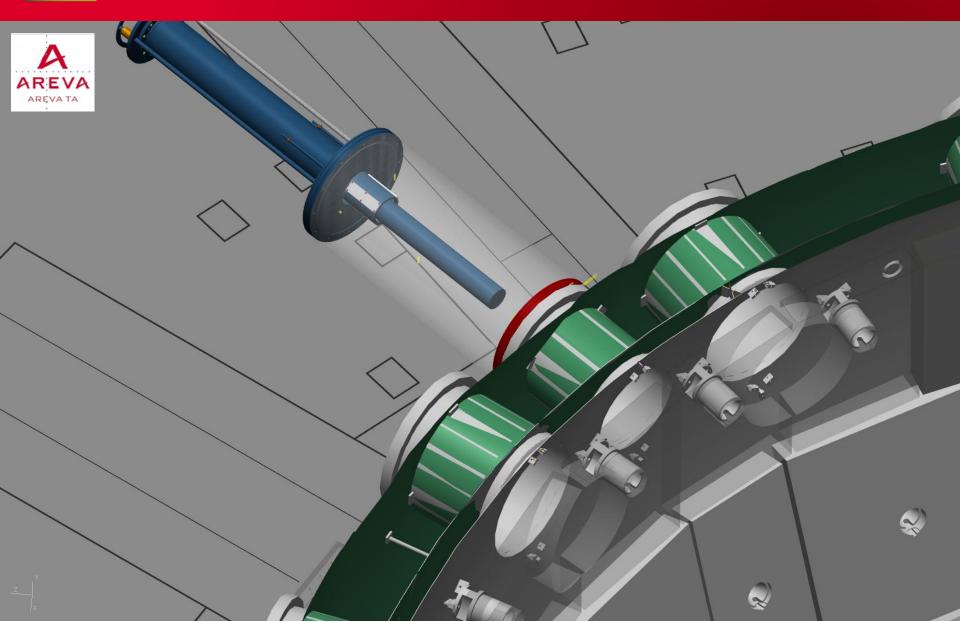
- **Neutron yield measurement** (Activation, PMT nTOF, CVD nTOF)
- Ti measurement (PMT nTOF, CVD nTOF)
- Bang Time measurement (PMT nTOF, CVD nTOF)
- **Anisotropy measurement**. (PMT nTOF, CVD nTOF)

D_2 implosion for 2019:

- 1 equatorial axis + 1 near polar axis(16°) is requested at minimum in 2019.
- Neutron yield prediction (1D et 2D) \approx 10¹¹ (\Rightarrow 10⁹-10¹⁰ due to 3D effects) \Rightarrow Neutron yield prediction is too low to use Indium diagnostic on LMJ in 2019 (Threshold about 5.10¹¹ @ 50 cm from TCC)

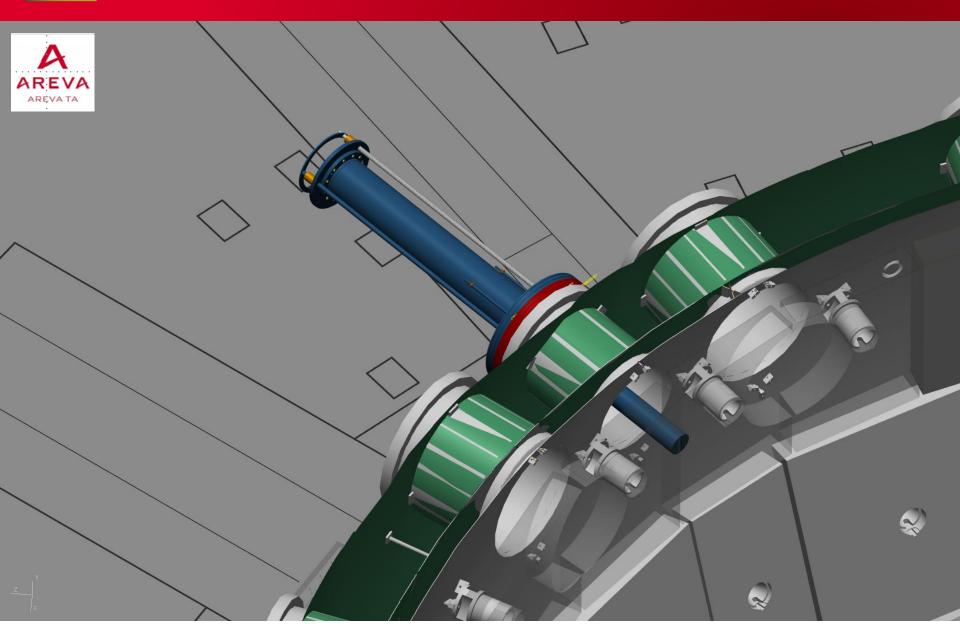
- Impossible to use the activation diagnostic which is the reference for neutron yield calibration
- Impossible currently to use CR39
- Necessary to use PMT + scintillators inside the target chamber
 - \Rightarrow go away from target chamber and protections to minimize downscattered γ and neutrons
 - \Rightarrow PMT nTOF calibration for D_2 and DT on OMEGA facility.

Development for 2019 - 2022: symmetry with 10 laser chains and more

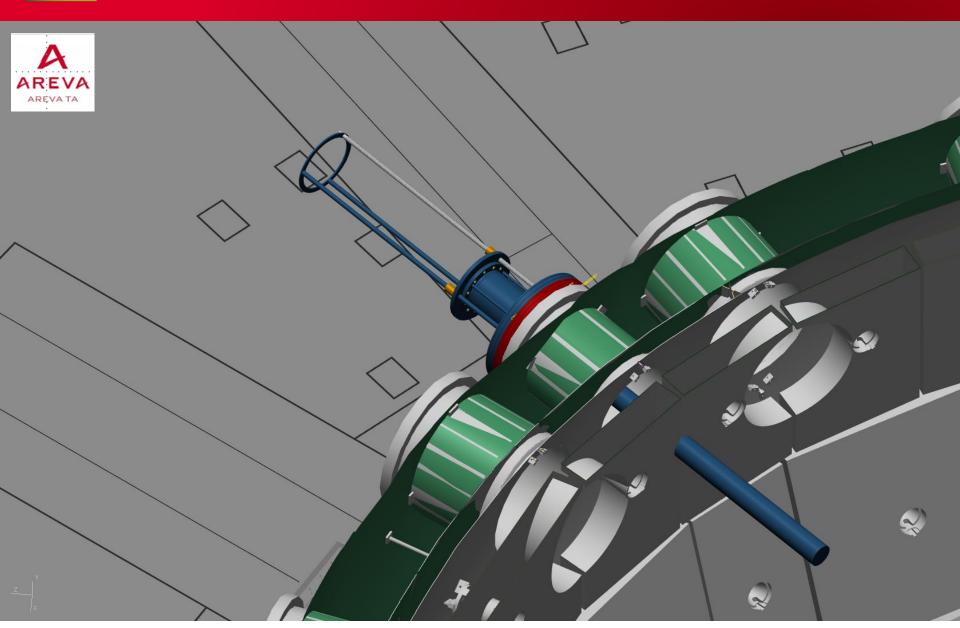

- Activation diagnostic in D13 position + RTP.
- 11 measurement locations are requested for the neutron pack.

Goals:

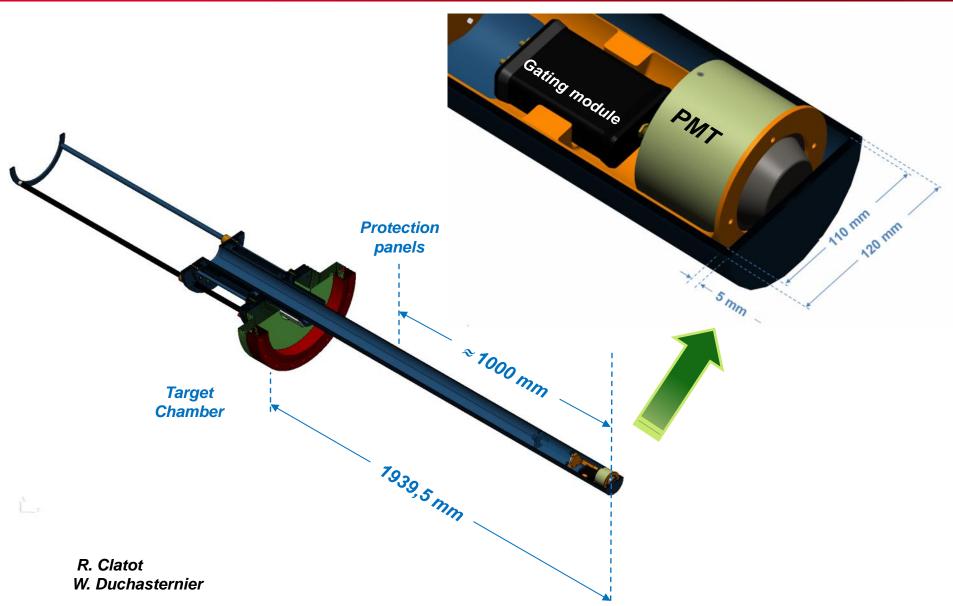
- Use the same concept for all measurement location on the target chamber
- Try to anticipate evolutions after 2022



Draft model of DP14 re-entrant tube : fixing

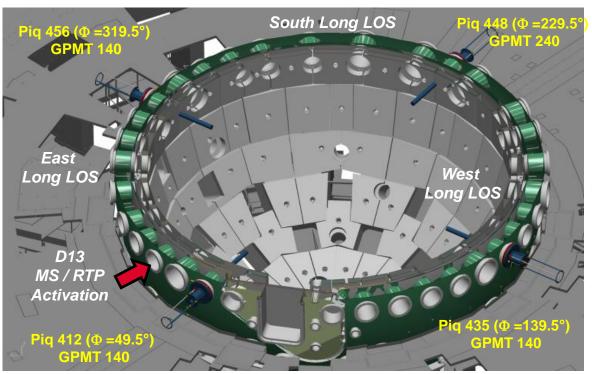


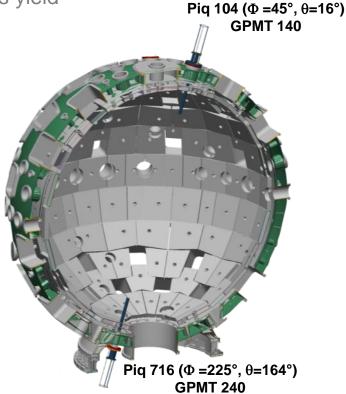
Draft model of DP14 re-entrant tube : maintenance



Draft model of DP14 re-entrant tube : operation

Draft model of DP14 re-entrant tube : operation





Overview – LMJ implosion of D₂ capsule in 2019

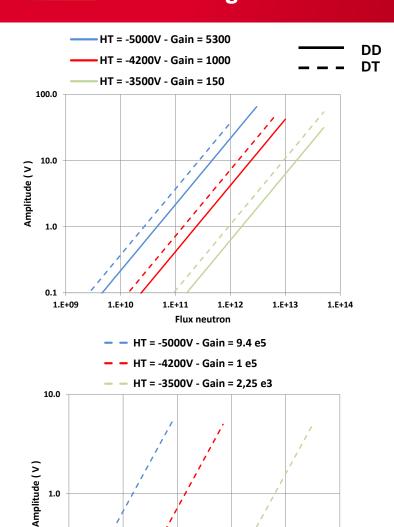
Summary:

- Simulations 1D & 2D: $\Phi_n = 10^{11} \text{ & Ti}_{max} = 1,85 \text{ keV}$
- PMT nTOF goal: $D_2 Y_n = 10^9 10^{10} \& Ti = a \text{ few keV}$
- 6 nTOF positions: 2 perpendicular equatorial axis + 1 near polar axis (16°)
- We will use both GPMT 140 (gain 10³) et GPMT 240 (gain 10⁶)
 - ⇒ allow us to measure Yn if prediction is overestimated
 - ⇒ will allow us in future to measure secondary neutrons yield

1.E+07

1.E+08

1.E+09


1.E+10

Flux neutron

1.E+11

1.E+12

LMJ nTOF range estimation using measurements made on OMEGA at 5.2 meters from TCC

<u>D₂ primary neutrons</u>

GPMT 140 + BC422Q(1 %) ϕ = 40 mm x 10 mm @ 3.6 m from TCC

DD range : 2 x 10⁹ à 5 x 10¹³ DT range : 10⁹ à 5 x 10¹³

Possibility to use 20 mm thick BC422Q

Secondary neutrons in D₂ shot

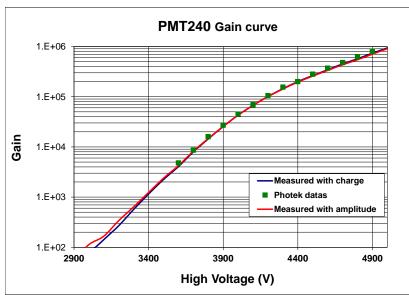
GPMT 140 + BC422Q(1 %) ϕ = 40 mm x 10 mm @ 3,6 m from TCC

DT range : 10⁷ à 5 x 10¹¹

The PMT commissioning will be made at CEA before calibration on OMEGA

Commissioning will be made at CEA:

PMTs gain curve and linearity/gain using a light source


Gating modules tests and operation

IR measured on ELSA facility with γ

Light Source

Reference
PMT
PMT
GM
PHOTEK PMT
140 or 240

DG 535

Two ways to make calibration on OMEGA

OMEGA:

Is there free LOS or positions around the OMEGA target chamber?

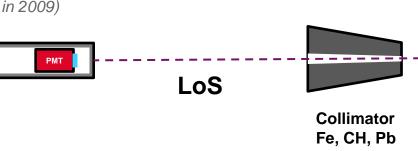
How many PMT can be installed at the same time?

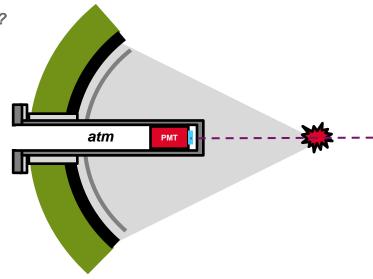
Can CEA PMT and acquisition system stay on OMEGA from 2017 to 2019?

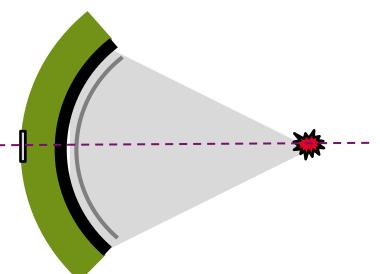
1st option:

■ Use PMT inside a re-entrant tube \Rightarrow Low yield.

2nd option:


Use PMT outside the Target Chamber with a collimator.


Shots days: low D₂ and DT yields


- CEA D_2 shot day in September 2017 (FY18 and FY19?)
- Low DT yield on OMEGA?

Detectors & acquisition:

- 8 PMT need to be calibrated (D₂ and DT)
- Scopes, HV, attenuators rack and cables will be provided by CEA Possibility to use the OMEGA acquisition system?
- Use of the CEA Indium activation diagnostic during 1 shot day (as for DT in 2009)

Draft schedule for DP14 development and calibration

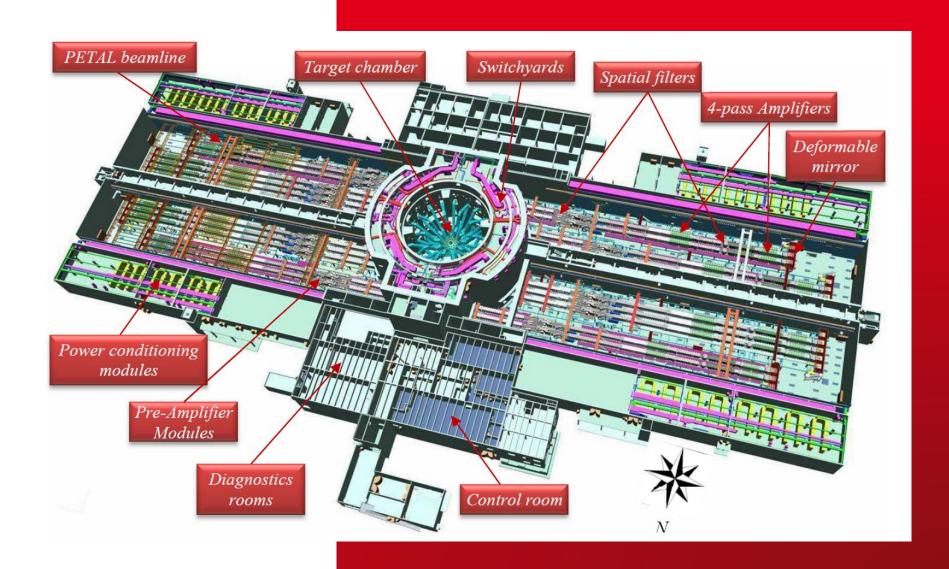
	2016	2017	2018	2019
Photek PMT	Ordered and delivery			
Scintillators	Order and delivery			
PMT receipt and qualification @ CEA	to Au	gust 2017		
IR test on ELSA facility with γ		to August 2017		
Diagnostic qualification for OMEGA	to Ju	ne 2017		
Calibration on OMEGA (D ₂ and DT)		4 th quarter FY17 (PI: F.Philippe) From Ju	ly 2017 to April 20	19
				LMJ shot

Conclusion

Scattering simulations need to be done to quantify geometry effects between OMEGA calibration and LMJ measurements

- LMJ PMTs (x8) need to be calibrated on OMEGA for D_2 :
 - ⇒ CEA will take D₂ shot day on OMEGA for FY17,18 and 19...
 - ⇒ We would like to use CEA indium activation diagnostic during 1 shot day to compare calibrations (as made for DT in 2009)
- If LLE agrees, we need to find LOS or positions on the OMEGA target chamber to be able to calibrate several PMT during the same shot:
 - ⇒ Diagnostic qualification process
 - ⇒ Can DP14 diagnostic stay several month on OMEGA?: PMT in TB, scopes rack in La Cave
 - ⇒ Can we use OMEGA acquisition system?
- According to PMT positions, it should be fine to calibrate PMTs for low DT yield.
- GOAL = start PMTs calibration during 2017, September 16th shot day (PI: F. Philippe).

Five additional positions on meridian 333° could be used after 2019


Piq 123 : Φ = 333°, θ = 22.5°

Piq 226 : $Φ = 333^\circ$, $θ = 44^\circ$

Piq 354 : Φ = 333°, θ = 70°

Piq 536 : $Φ = 333^\circ$, $θ = 112^\circ$

Piq 724 : Φ = 333°, θ = 146.8°

