Record Fifth-Harmonic–Generation Efficiency Producing 211-nm Pulses Using Cesium Lithium Borate

I. A. Begishev *et al*. University of Rochester Laboratory for Laser Energetics CEA–NNSA Joint Diagnostic Meeting Rochester, NY 29–30 June 2016

Cesium lithium borate (CLBO) is a promising option for high-energy coherent-light generation in the UV region

- High-energy coherent-light sources around 200 nm are necessary for diagnosing hot and dense plasmas
- Wide-aperture fifth-harmonic generation (5HG) of Nd:YLF laser radiation has been realized with a cascade of deuterated potassium dihydrogen phosphate (DKDP), potassium dihydrogen phosphate (KDP), and CLBO crystals
 - 275 mJ at 211 nm was reached with a 2.4-ns pulse
 - a conversion efficiency of 25% is the highest reported
- The main limitations are two-photon absorption of fifth-harmonic radiation and a temperature gradient over the CLBO crystal

High-energy, high-efficiency fifth-harmonic generation has been demonstrated with a large-aperture CLBO crystal.

Collaborators

J. Bromage and J. D. Zuegel

University of Rochester Laboratory for Laser Energetics

P. S. Datte and S. T. Yang

Lawrence Livermore National Laboratory

A 200-nm source is desirable to probe a high-density hot plasma

*TPD: two-plasmon decay

**SRS: stimulated Raman scattering

[†]SBS: stimulated Brillouin scattering

G10838

Generating multiple joules at 5ω reduces the crystal options to the KDP group and CLBO

- First 5HG in 1969*
- Wide-aperture, high-efficient 5HG in ammonium dihydrogen phosphate (ADP) at -70°C**
- The CLBO crystal grew to $140 \times 110 \times 110 \text{ mm}^{3***}$

CLBO crystals in ovens were manufactured by Coherent, Inc.

The CLBO crystal is enclosed in an oven with dry nitrogen and held at 120°C to avoid hygroscopic damage to the surfaces.

The experiments were performed at LLE using the Multi-Terawatt (MTW) laser

The experiments were performed at LLE using the Multi-Terawatt (MTW) laser

The experiments were performed at LLE using the Multi-Terawatt (MTW) laser

Measured angular and temperature acceptances of 5ω agree with simulations

4-mm long CLBO

The maximum fifth-harmonic energy of 275 mJ was reached with a 2.4-ns pulse

G10844

The maximum fifth-harmonic energy of 275 mJ was reached with a 2.4-ns pulse

G10844a

The maximum 5 ω conversion efficiency was reached with a 1-ns pulse

The maximum 5 ω conversion efficiency was reached with a 1-ns pulse

G10847a

Two-photon absorption is the main fundamental limit for 5ω generation in CLBO

- The energy balance (♦) is decreased significantly by two-photon absorption.
- Two-photon absorption of $(4\omega + 4\omega)$ is relatively low.

Higher conversion efficiency would be possible if the 5 ω phase matching was uniform over the crystal

The 5 ω beam nonuniformity comes from a temperature gradient over the CLBO crystal

ROCHESTER

G10851

Summary/Conclusions

Cesium lithium borate (CLBO) is a promising option for high-energy coherent-light generation in the UV region

- High-energy coherent-light sources around 200 nm are necessary for diagnosing hot and dense plasmas
- Wide-aperture fifth-harmonic generation (5HG) of Nd:YLF laser radiation has been realized with a cascade of deuterated potassium dihydrogen phosphate (DKDP), potassium dihydrogen phosphate (KDP), and CLBO crystals
 - 275 mJ at 211 nm was reached with a 2.4-ns pulse
 - a conversion efficiency of 25% is the highest reported
- The main limitations are two-photon absorption of fifth-harmonic radiation and a temperature gradient over the CLBO crystal

High-energy, high-efficiency fifth-harmonic generation has been demonstrated with a large-aperture CLBO crystal.

Fifth-harmonic generation has been realized in a cascade frequency conversion

CHESTER

How efficient is the fifth-harmonic-generation process?

Half the optical output energy is at 5ω .

LLE

Damages have been found on both input and output surfaces of CLBO, even in the area not exposed by the laser beam

*A. A. Kozlov and S Papernov, tested in the LLE Damage Test Laboratory (2016).

G10852

The CLBO oven input window is AR coated for 1ω and 4ω ; the crystal and output window are uncoated.

