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TS cross section is 6.65x10-29 m2 (very small), for a typical  
experiment you hope to collect 10-9 of the probe beam energy 

Optical Thomson provides a local 
measurement of the plasma conditions 
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Thomson scattering is the scattering of an 

electromagnetic wave by free electrons. 
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Improving our physics based hohlraum 
understanding and predictive capability is 
a major program focus 

Backscatter 

CBET 

Wall blow-in 
Plasma temperature, 
density, and flow 

Beam propagation 

Additional physics: X-ray conversion, 
wall losses, wall-gas mix, hot-electron 
preheat, glint, re-amplification… 

Thomson scattering has the ability to enhance our 
understanding of a majority of these issues 
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Thomson scattering from a deep-UV 
probe beam will overcome the harsh 
environment that challenges optical 
measurements in a hohlraum  
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The deep-UV NIF OTS will be a pioneering 
diagnostic in Thomson scattering research 

~150 kJ 

~50 kJ 

10s mJ 

Expected TS signal is a few µJ 



5ω Thomson scattering will also provide access to 
quarter critical plasma conditions in polar direct drive 
experiments 

•  5ω operations will enable: 

• Access to ncr/4 plasma conditions (Te, Ti, Ne, Vflow) 

• The direct measurement of the amplitude of ion-acoustic waves 
driven by cross-beam energy transfer Slide courtesy of D. Froula 
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A phased approach to Optical Thomson 
Scattering (OTS) will mitigate the risk 
presented by background levels 

•  Phase I 
•  Assess background levels around potential probe wavelengths  

•  Design and field an optical collection system 
•  Supporting Electron Feature not to preclude Ion Feature 

•  Alignment to +/-250 microns for different target types 
•  Utilize existing NIF beams for the probe on “simple” 

experiments (Quartraums, Collisionless Shocks, etc.)

•  Phase II 
•  Using the background measurements from Phase I validate the 

probe beam requirements 
•  Design and field a Thomson scattering system with a dedicated 

probe beam to allow measurements on all platforms  

Based on the recommendation of two diagnostic 
workshops we have developed a phased approach 
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§  Optical Thomson Scattering, Phase I 
— Requirements Review (RR) – 11/21/14 
— Conceptual Design Review (CDR) – 3/19/15 
— Optical System Review – 11/5/15 
— Final Design Review (FDR) – 12/7/15 

—  Installation/Operational Qualification – Q4FY16 
— 1st Qualification shot scheduled – 10/2016 
— A series of qualification shots are planned for FY17  
— Once the diagnostic is qualified it will be made available to users 

OTS Phase I is currently in progress 
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§  Optical components include 
—  Blast window 
—  Unobscured collection telescope 
—  Transport optics, including off-axis parabola for focusing to pinhole 
—  Separate Czerny-Turner spectrometers for ion-wave & electron-wave band 

§  Streak camera records time-multiplexed spectrums from two 
spectrometers: 
—  the electron plasma wave spectrometer (low resolution ~0.15m) 
—  the ion acoustical wave spectrometer (high resolution ~0.6m) 

Optical Thomson Scattering is a DIM 
based diagnostic platform 

~2 meters 

Airbox/Optical Streak Camera 
Spectrometers (IAW, EPW) 

Telescope 

TCC 
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Collection Telescope 

Air force target imaged 
with the telescope 

161 lp/mm 
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Tom Mccarville 
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Justin Galbraith 

Telescope 
Spectrometers 
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Gene Frieders Spectrometers 
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Streak Camera Airbox DIM Gear Box 
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Synthetic data is generated using the 
expected system throughput, quantum 
efficiency and background 

•  10 GW 5ω pulse  
•  10J in 1ns 

•  Plasma conditions are 
constant in time 

•  The properties of each 
optical component are 
used to calculate the 
system performance 
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IAW EPW 

Reciprocal linear dispersion at exit slit (nm/mm) 0.6313 5.620 

Reciprocal linear dispersion at photocathode (nm/mm) 0.4858 4.369 

Desired bandwidth (nm) 4 50 

Bandwidth for 20mm photocathode width (nm)* 9.2 71.4 

Size of desired band at photocathode (mm) 17.4 11.3 

Resolution specification (δλ/λ)  0.0001 0.01 

Achieved resolution (given dispersion, pinhole size) 0.000113 0.00335 

Theoretical resolution (based on illuminated grooves) 0.000004 0.000095 

The OTS system is also designed for 3ω 
operations 

With minimal component changes the system can be used with a 3ω probe 
Magnifications, Size of Thomson volume, time resolution are all unchanged 
Assumption: use same gratings, IAW now in 1st order 
 

* Accounts for clipping at EPW mask plane mirror 
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§  DIM based installation 

§   Streak camera control 
— Pre shot dry runs 
— Comb and FIDU recording 

§  ATLAS Alignment 
— Video internal alignment 
—  Illumination control 

§  Iris adjustments 

§  Grating adjustments 

§  Mask adjustments 

Concept of operations for OTS during 
shot cycle 

§  OTS currently does not 
support classified operations. 

§  If required to operate in 
classified mode simple 
changes to the video camera 
controls could be 
implemented. 
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The OTS diagnostic can be aligned with an 
internal alignment camera or ATLAS 

§  Initial Alignment within NIF 
— Align target to TCC using TAS 

•  ATLAS measures TAS to locate TCC 
— Pick off mirror is inserted to direct light from 

the telescope to PixeLINK 957G camera 
— Telescope views target and image is 

relayed to camera 
•  Adjust telescope position until 

image overlays pinhole location 
— ATLAS measures OTS DLP of 

retroreflecting targets (8) 
•  Defines relationship between 

target location and OTS LOS 

8X ATLAS 
Retroreflectors 

16 ATLAS retroreflecting targets are included 
within the telescope and spectrometer 
modules (8 viewable by DIM 0-0 and 8 
viewable by DIM 90-315) 
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OTS Phase II laser system evaluation in 
progress  

Laser system is required for Phase II operation, several areas require investigation 

•  Develop a laser plan for OTS Phase II 

•  Evaluate a 5th harmonic generator  

•  Conversion efficiency 

•  Damage threshold 

•  Estimate crystal aperture  

•  Determine the required energy for NIF OTS – Phase I measurements 

•  Establish facility configuration options – Switch yard 1, 40ft level 

•  Evaluate laser sources that can meet performance 
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CLBO 5th harmonic generation evaluation 
summary 

•  Measurement Include 
•  Phase matching 
•  Temperature sensitivity 
•  Image at crystal plane 
•  Conversion efficiency 
•  Max operating power 
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CLBO 5th harmonic generation evaluation 
summary - Continued 

Preliminary results show: 

•  Phase matching angle (FWHM):  1.7 mRad 

•  Temperature sensitivity( FWHM): 7 oC 

•  Conversion efficiency: ~20% @ 2.8ns pulse width 

•  Operation power (GW/cm2): ~ 0.4 

Data Acknowledgement: 
•  Special thanks to LLE for working with LLNL to 

complete these important and encouraging 
measurements! 
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Conceptual Laser System Overview 

2
2

Capacitor Bay, Level B2 

OTS Laser Room, 
Level 1 

Beam Transport 

Final Optics, TC Launch 

Switch Yard 1 
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OTS Laser Room 

2
3

Laser Room 

Control Room 

Change Room 

Racks 

“Bowling Alley” 

SY1, Level 1 

Exit 

SIS CCB5 Feedback, 5/17/16: 
•  Area will be swept for all shots 
•  No occupancy allowed during CAT C or 

precision shots 
•  Consider laser curtain, local HEPA change 

room  
•  Consider NTOF Pit for Cap Bay 
•  Need laser safety assessment 
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OTS Laser concept 

2
4

PCU 

PAM 

Amplifier Table 1 

Amplifier Table 2 
(if needed) 

LLE PAM 

15cm LLE Disc Amplifier 
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Concept for beam delivery to target 
chamber center 

DIM 90-315 

PDIM 

DIM 90-78 

Port 90-45 
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The laser is pointed to the DIM due to 
alignment constraints 

Single target chamber port sought for OTSL launch 
capabilities for multiple DIM orientations 

PolarDIM 

DIM 90-315 

DIM 90-78 

CryoTARPOS & TANDM (not shown) 
obstruct view factor to 90-315 OTS  

e.g. 90-45 target chamber port 

DLP rib 
modification 
required 

Receiving 
(static) 
fold mirror 
added 
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Current OTS laser status 

•  Crystal evaluation demonstrates that CLBO is a very 
encouraging candidate, more data will be collected over the 
next few months. 

•  Location has been identified in switchyard 1 

•  Laser energy limits will be established with Phase 1 
measurements (Q1FY17). 

•  Laser development requires “custom” designs that are not off 
the shelf.  
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§  OTS is a DIM based collection system designed for 
wavelengths from 150nm to >600nm 

§  The system will operate in either the polar and equatorial 
location 

§  OTS Phase I fabrication is in progress with installation planned 
for 4Q FY16 

§  OTS Phase I (including 3w Thomson Scattering) qualification 
begins in FY17 

§  Once the diagnostic is qualified it will be made available to 
users 

§  A dedicated 5th harmonic probe beam is being developed in 
collaboration with LLE 

 
 

OTS Summary 
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Motivation: Need to Protect  
optics from hohlraum x-ray flux 
•  Optical diagnostics require blast shields to protect 

optics 

•  Blast shield subjected to hohlraum x-ray flux 

•  X-rays cause “blanking” – radiation induced 
opacity of glass 

•  Looked at during development of Near 
Backscatter Imager (NBI): 

•  London et. al., Blanking @ 300 mJ cm-2  

•  Thomson scattering blast shield is 60cm from 
TCC  

•  experimental evidence and theory both 
suggest that at this distance blast shield will 
blank rapidly without protection 

Blast 
shield 

X-ray 
Flux 

60 cm
 

Optical 
Telescope 

hohlraum 

First 
focusing 
mirror 

8 J cm-2 
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Concept – Currently considering 
two designs of gas x-ray shield 
for the NIF 

10 cm 
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Fast Gas 
Injection 
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 P
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Blast 
Window 

hohlraum 

Thin SiN (~100 nm) 
membrane 
blown-down by X-ray 

•  X-rays absorbed in Xe gas  
•  similar to concept 

developed for LIFE 
program 

•  Xe is photo-ionized by x-
rays 

•  Xe density tailored such 
that max(ne) << nc 

•  nc(5ω) = 2.5×1022 cm-3 

•  UV signal is transmitted 
through photo-ionized 
plasma 

Dynamic gas jet Static gas cell 
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OMEGA results provide a path to a 
blanking mitigation scheme for NIF 
OTS 

probe 
focal 
spot 

50nm SiN  
membrane 

0.64 PSI (0.04Bar) 
Xe Gas Fill 

MgF window 
sample 

Soft x-ray 
flux 

Gold Sphere 
Radiation 

Source 

tube wall 10 cm 
20 cm 

To OTS  
Telescope 24 J cm-2 

6 J cm-2 

•  Shot day was April 26th – currently only preliminary analysis is available. 

•  High quality data was captured in a total of 11 target shots. 
•  4 Shots measured onset of blanking in Fused Silica and Magnesium Fluoride at 10 and 

20cm distances 
•  2 Shots tested statically filled gas x-ray shields with 500 nm & 200 nm membranes 
•  4 Shots tested in-situ filled gas x-ray shields 100 nm, 50 nm and 30 nm 
•  1 Control Shots: 

•  50 nm membrane only 

1.
5 

m
m
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Xe gas shield appears to mitigate x-
ray blanking of MgF2 samples 

•  Xe gas shield with SiN membrane is capable of mitigating x-ray blanking 

•  Thickness of SiN membrane is critical – 30 and 50nm membranes show 
improvement over bare MgF2 

Absorption due to 
cooling of plasma at 
the end of the laser 
pulse? 

30 nm SiN 

50 nm SiN 

100 nm SiN 

200 nm SiN 

MgF2 @ 20 cm 

Drive 
Pulse 
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Probe laser 
•  Wavelength , λ0– between 185-215 nm  
•  Power – 10 GW 
•  Energy – 10J 
•  Pulse width – 1 ns, flat-top 

Spectrometers 
•  Ion feature band (Δλ ±4 nm) 

•  Ion feature resolution – (δλ/λ) = 0.0001 
•  Electron feature band (150-300 nm) 

•  Electron features – (δλ/λ) = 0.01 
•  Time window 5-35 ns 

Probe laser and collection port location – (0-0 notional) 
•  Collection to target alignment ±250 µm 
•  Probe to collection alignment ±50 µm 
•  Collection angle ~18 degrees 

The high level technical requirements for 
the NIF OTS system were developed to 
allow plasma characterization in NIF 
hohlraums 
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The mechanical design consists of four 
major subsystems 

OTS Custom 
DIM Cart 

Airbox with 
Streak Camera 

Dual Spectrometer Module 

Telescope Module 
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OTS telescope module 

§  Self contained 
§  Mounts to Spectrometer Module with fasteners and precision pins 
§  Subsystems include: Frame, Blast Window, Illumination, and Optical 

Mounts 

Blast Window & 
Scraper Armor Glass 

Frame 

Optical Mounts 

Illumination 
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OTS spectrometer module – hardware 
layout 

Motorized  
Iris (2x) 

Grating (2x) 
Mask (2x) 

Pickoff Mirror 
Alignment 
Camera 

Small Mirror 
Mount (12x) Photodiode (2x) 

Pinhole 

with Ray Trace 



LLNL-PRES-xxxxxx 
38 

The OTS streak camera is housed in an 
airbox 

•  Optical streak camera configuration 

•  S-20 Streak tube 

•  21 mm spatial region for IAW & EWP 
spectrum 

•  Resolution element ~100 um 

•  FIDU and Comb imprinted on data image 

•  Gated cathode operation 

•  4 selectable sweep window (5,10,15,35) ns 

•  CaF2 Airbox vacuum window 

•  CaF2 photo-cathode window 

•   N2 beam path from window to optical path 

Input 
Front 


