Optical Thomson Scattering on NIF June 30th, 2016

James Steven Ross

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Optical Thomson Scattering (OTS) team

- OTS DLP Design Team (LLNL)
 - Responsible Scientist Steven Ross
 - Responsible Individual Philip Datte
 - Project Engineer Dan Manha
 - Mechanical Design Justin Galbraith / Mike Vitalich / Brad Petre / Steve Kramer / Mike Hardy / Ron Bettencourt / Mike Smigel / Kathy Keith / Tony Lee
 - Electrical Design Ben Hatch/Warren Massey/Gene Vergel de Dios/Ray laea/ Jason Beagle
 - Internal Alignment Tom McCarville, Gene Frieders
 - Analysis Cal Smith/Suzanne Singer
 - Optical Design Stacie Manuel/Bill Molander
 - Software Kelly Burns/Barry Fishler
 - Additional Support Steven Yang/Mike awre Rayce/Mike Borden/

- OTS Working Group
 - LLNL: J. S. Ross, J. Moody, L. Divol, P. Michel, D. Turnbull, O. Landen, B. Pollock, G. Swadling, C. Goyon, O. Jones, J. Milovich
 - GA: J. Kilkenny
 - LLE: D. Froula, J. Zuegal, J. Bromage
 - LANL: D. Montgomery, J. Kline
 - SLAC: S. Glenzer
 - NRL: J. Weaver
 - SNL: A. Sefkow
 - AWE: D. Chapman
 - U. Alberta: W. Rozmus
- OTS Laser Design Team
 - A. Bayramian, D. Barker, R. Acree, S. Patankar,
 L. Chang, S. Yang, G. Brunton, S. Manuel, M.
 Vitalich, S. Swadling, K. Skulina, B. Galloudec

Optical Thomson provides a local measurement of the plasma conditions

TS cross section is 6.65x10⁻²⁹ m² (very small), for a typical experiment you hope to collect 10⁻⁹ of the probe beam energy

Improving our physics based hohlraum understanding and predictive capability is a major program focus

Thomson scattering has the ability to enhance our understanding of a majority of these issues

probe beam will overcome the harsh environment that challenges optical measurements in a hohlraum

The deep-UV NIF OTS will be a pioneering diagnostic in Thomson scattering research

5

5ω Thomson scattering will also provide access to quarter critical plasma conditions in polar direct drive experiments

•Access to $n_{cr}/4$ plasma conditions (T_e, T_i, N_e, V_{flow})

•The direct measurement of the amplitude of ion-acoustic waves driven by cross-beam energy transfer

Slide courtesy of D. Froula

A phased approach to Optical Thomson Scattering (OTS) will mitigate the risk presented by background levels

Based on the recommendation of two diagnostic workshops we have developed a phased approach

- Phase I
 - Assess background levels around potential probe wavelengths
 - Design and field an optical collection system
 - Supporting Electron Feature not to preclude Ion Feature
 - Alignment to +/-250 microns for different target types
 - Utilize existing NIF beams for the probe on "simple" experiments (Quartraums, Collisionless Shocks, etc.)
- Phase II
 - Using the background measurements from Phase I validate the probe beam requirements
 - Design and field a Thomson scattering system with a dedicated probe beam to allow measurements on all platforms

OTS Phase I is currently in progress

- Optical Thomson Scattering, Phase I
 Requirements Review (RR) 11/21/14
 Conceptual Design Review (CDR) 3/19/15
- \checkmark Optical System Review 11/5/15
- ✓— Final Design Review (FDR) 12/7/15
 - Installation/Operational Qualification Q4FY16
 - 1st Qualification shot scheduled 10/2016
 - A series of qualification shots are planned for FY17
 - Once the diagnostic is qualified it will be made available to users

Optical Thomson Scattering is a DIM based diagnostic platform

- Optical components include
 - Blast window
 - Unobscured collection telescope
 - Transport optics, including off-axis parabola for focusing to pinhole
 - Separate Czerny-Turner spectrometers for ion-wave & electron-wave band
- Streak camera records time-multiplexed spectrums from two spectrometers:
 - the electron plasma wave spectrometer (low resolution ~0.15m)
 - the ion acoustical wave spectrometer (high resolution ~0.6m)

Collection Telescope 🥫

. .

2

Air force target imaged with the telescope

Tom Mccarville

1

-

Justin Galbraith

Telescope

0

-

(8)

0

00

Spectrometers

....

0

Gene Frieders

Spectrometers

A Miles Fill

1000

Streak Camera Airbox

2 2 4

Synthetic data is generated using the expected system throughput, quantum efficiency and background

The OTS system is also designed for 3ω operations

With minimal component changes the system can be used with a 3ω probe Magnifications, Size of Thomson volume, time resolution are all unchanged Assumption: use same gratings, IAW now in 1st order

	IAW	EPW
Reciprocal linear dispersion at exit slit (nm/mm)	0.6313	5.620
Reciprocal linear dispersion at photocathode (nm/mm)	0.4858	4.369
Desired bandwidth (nm)	4	50
Bandwidth for 20mm photocathode width (nm)*	9.2	71.4
Size of desired band at photocathode (mm)	17.4	11.3
Resolution specification $(\delta\lambda/\lambda)$	0.0001	0.01
Achieved resolution (given dispersion, pinhole size)	0.000113	0.00335
Theoretical resolution (based on illuminated grooves)	0.000004	0.000095

* Accounts for clipping at EPW mask plane mirror

Concept of operations for OTS during shot cycle

- DIM based installation
- Streak camera control

 Pre shot dry runs
 Comb and FIDU recording
- ATLAS Alignment
 - Video internal alignment
 - Illumination control
- Iris adjustments
- Grating adjustments
- Mask adjustments

- OTS currently does not support classified operations.
- If required to operate in classified mode simple changes to the video camera controls could be implemented.

The OTS diagnostic can be aligned with an internal alignment camera or ATLAS

- Initial Alignment within NIF
 - Align target to TCC using TAS
 - ATLAS measures TAS to locate TCC
 - Pick off mirror is inserted to direct light from the telescope to PixeLINK 957G camera
 - Telescope views target and image is relayed to camera
 - Adjust telescope position until image overlays pinhole location
 - ATLAS measures OTS DLP of retroreflecting targets (8)
 - Defines relationship between target location and OTS LOS

16 ATLAS retroreflecting targets are included within the telescope and spectrometer modules (8 viewable by DIM 0-0 and 8 viewable by DIM 90-315)

OTS Phase II laser system evaluation in progress

- Develop a laser plan for OTS Phase II
- Evaluate a 5th harmonic generator
 - Conversion efficiency
 - Damage threshold
 - Estimate crystal aperture
- Determine the required energy for NIF OTS Phase I measurements
- Establish facility configuration options Switch yard 1, 40ft level
- Evaluate laser sources that can meet performance

Laser system is required for Phase II operation, several areas require investigation

CLBO 5th harmonic generation evaluation summary

- Measurement Include •
 - Phase matching •
 - Temperature sensitivity •
 - Image at crystal plane •
 - Conversion efficiency •
 - Max operating power ٠

110 115 Temperature (°C)

100 105

0.0

80 85 90 95

120 125 130 135 140

CLBO 5th harmonic generation evaluation summary - Continued

Preliminary results show:

- Phase matching angle (FWHM): 1.7 mRad
- Temperature sensitivity(FWHM): 7 °C
- Conversion efficiency: ~20% @ 2.8ns pulse width
- Operation power (GW/cm²): ~ 0.4

Data Acknowledgement:

 Special thanks to LLE for working with LLNL to complete these important and encouraging measurements!

Conceptual Laser System Overview

OTS Laser Room

LLNL-PRES-xxxxxx

y and the second se

OTS Laser concept

Concept for beam delivery to target chamber center

LINL-PRES-XXXXX

The laser is pointed to the DIM due to alignment constraints

Current OTS laser status

- Crystal evaluation demonstrates that CLBO is a very encouraging candidate, more data will be collected over the next few months.
- Location has been identified in switchyard 1
- Laser energy limits will be established with Phase 1 measurements (Q1FY17).
- Laser development requires "custom" designs that are not off the shelf.

OTS Summary

collaboration with LLE

ence Livermore National Laboratory

- OTS is a DIM based collection system designed for wavelengths from 150nm to >600nm
- The system will operate in either the polar and equatorial location
- OTS Phase I fabrication is in progress with installation planned for 4Q FY16
- OTS Phase I (including 3w Thomson Scattering) qualification begins in FY17
- Once the diagnostic is qualified it will be made available to users
- A dedicated 5th harmonic probe beam is being developed in

Motivation: Need to Protect optics from hohlraum x-ray flu

- Optical diagnostics require <u>blast shields</u> to protect optics
- Blast shield subjected to hohlraum x-ray flux
- X-rays cause <u>"blanking"</u> radiation induced opacity of glass
 - Looked at during development of Near Backscatter Imager (NBI):
 - London et. al., Blanking @ 300 mJ cm⁻²
 - Thomson scattering blast shield is 60cm from TCC
 - experimental evidence and theory both suggest that at this distance <u>blast shield will</u> <u>blank</u> rapidly without protection

two designs of gas x-ray shield

- X-rays **absorbed** in Xe gas
 - similar to concept developed for LIFE program
- <u>Xe</u> is <u>photo-ionized</u> by xrays
- Xe density tailored such that **max(n_e) << n_c**
 - $n_c(5\omega) = 2.5 \times 10^{22} \text{ cm}^{-3}$
- UV signal is transmitted through photo-ionized plasma

OMEGA results provide a path to a blanking mitigation scheme for NIF

- Shot day was April 26th currently only **preliminary** analysis is available.
- High quality data was captured in a total of 11 target shots.
 - 4 Shots measured onset of blanking in Fused Silica and Magnesium Fluoride at 10 and 20cm distances
 - 2 Shots tested statically filled gas x-ray shields with 500 nm & 200 nm membranes
 - 4 Shots tested in-situ filled gas x-ray shields 100 nm, 50 nm and 30 nm
 - 1 Control Shots:
 - 50 nm membrane <u>only</u>

Xe gas shield appears to mitigate xray blanking of MgF₂ samples

- Xe gas shield with SiN membrane is capable of mitigating x-ray blanking
- Thickness of SiN membrane is critical 30 and 50nm membranes show improvement over bare MgF₂

the NIF OTS system were developed to allow plasma characterization in NIF

Description

- Ion feature band (Δλ ±4 nm)
 - Ion feature resolution $(\delta \lambda / \lambda) = 0.0001$
- Electron feature band (150-300 nm)
 - Electron features $(\delta \lambda / \lambda) = 0.01$
- Time window 5-35 ns

Probe laser

- Wavelength , $\lambda_{0}\text{--}$ between 185-215 nm
- Power 10 GW
- Energy 10J
- Pulse width 1 ns, flat-top

Probe laser and collection port location – (0-0 notional)

- Collection to target alignment ±250 μm
- Probe to collection alignment ±50 μm
- Collection angle ~18 degrees

The mechanical design consists of four major subsystems

Lawrence Livermore National Laboratory

OTS telescope module

- Self contained
- Mounts to Spectrometer Module with fasteners and precision pins
- Subsystems include: Frame, Blast Window, Illumination, and Optical Mounts

OTS spectrometer module – hardware layout

The OTS streak camera is housed in an airbox

- Optical streak camera configuration
 - S-20 Streak tube
 - 21 mm spatial region for IAW & EWP spectrum
 - Resolution element ~100 um
 - FIDU and Comb imprinted on data image
 - Gated cathode operation
 - 4 selectable sweep window (5,10,15,35) ns
 - CaF₂ Airbox vacuum window
 - CaF₂ photo-cathode window
 - N₂ beam path from window to optical path