

www.cea.fr

The diagnostics of the PETAL+ project

B. Vauzour, I. Thfoin , A. Duval,

C. Reverdin, B. Rossé, J.-L. Miquel

CEA-NNSA Joint Diagnostic Meeting June 29-30, 2016

PETAL and the PETAL+ project

PETAL+ project goal: Construction of 3 new diagnostics to characterize the particle source produced by the interaction of PETAL with a target D. Batani et al., Phys. Scr, T161, 014016 (2014) A. Casner et al., HEDP, 17, (2014)

M.J. Rosenberg et al., PRL, 114, 205004 (2015)

B. Vauzour | CEA - NNSA Joint Diagnostic Meeting | June 28-29, 2016

Expected particle beams with PETAL

B. Vauzour | CEA - NNSA Joint Diagnostic Meeting | June 28-29, 2016

SPECTIX

a X-ray spectrometer

www.cea.fr

Physical concept of the X-ray spectrometer

- ... which is robust and easy to align
- ... that covers a wide spectral range
 - ... with reduced background noise

X-ray dispersion according to the Bragg's law:

 $2d \sin \theta = n\lambda$

The SPECTIX design

SPECTIX : Spectromètre PEtal à Cristal en TransmIssion X

(PEtal Spectrometer using a X-ray TransmIssion Crystal)

Inserted in the LMJ chamber via a SID

Characteristics of the spectrometer module

Enhanced spectral range thanks to a versatile detector positioning and the use of 3 different crystals

Crystals' reflectivities fully characterized

Remaining background noise removal using the magnet module

3D modeling of the noise removal using Geant4 simulations

- Geant4 simulations well reproduce the remaining background noise often observed experimentally
- This background noise is produced by the incoming charged particles that pass through the slit (especially electrons)
 - Results (Simulations + experiment) show that the use of a magnet in front of the spectrometer allows to considerably reduce this noise

	REQUIRED	SPECTIX
Spectral range	7 – 100 keV	7 – 190 keV
Spectral resolution	1/300*	1/300 – 1/50
Dynamic range	10 ¹⁰ – 10 ¹³ ph/sr (over the whole spectral range)	Not fulfilled for E>100keV (>10 ¹¹ ph/sr)

* $K\alpha_1$ and $K\alpha_2$ lines must be separated

Available in 2017 for experiments

SESAME

the electron spectrometer

www.cea.fr

Physical concept of the SESAME spectrometer

 L_m : Magnets length D_m : Drift distance between magnets and detector m: Particle mass

The SESAME design

SESAME: Spectromètre ElectronS Angulaire Moyennes Energies

Characteristics of the spectrometer module

B field modelling with OPERA 3D

Magnetic dipole characteristics

Geant4 simulation of a typical electron trace obtained with SESAME (side IP)

B. Vauzour | CEA - NNSA Joint Diagnostic Meeting | June 28-29, 2016

	REQUIRED	SESAME
Spectral range	5 – 150 MeV	5 – 150 MeV
Spectral resolution	1/20 (5%)	1/100 (1%) – 1/16 (6%)
Dynamic range	10 ⁸ – 10 ¹⁵ e ⁻ /MeV/sr (over the whole spectral range)	3.10 ⁹ – 5.10 ¹⁵ e ⁻ /MeV/sr

Available in 2017 for experiments

SEPAGE

the proton and electron spectrometer

www.cea.fr

Physical concept of the Thomson Parabola (TP)

Lorentz force:
$$\vec{F_L} = q(\vec{E} + \vec{v} \times \vec{B})$$

Due to the Lorentz force:

- Energy dispersion along the X-axis due to \vec{B}
- **q**/m dispersion along the Y-axis due to \vec{E}

$$Y = \frac{A m L_e E \left(D_e + \frac{L_e}{2}\right)}{qeL_m^2 B^2 \left(D_m + \frac{L_m}{2}\right)} X^2$$

Example of TP raw spectra

 L_e : Electrodes lengthm: Particle mass L_m : Magnets lengthA: Atomic weight D_e : Drift distance between electrodes and detector D_m : Drift distance between magnets and detector

The SEPAGE design

B. Vauzour | CEA - NNSA Joint Diagnostic Meeting | June 28-29, 2016

Characteristics of the two Thomson Parabola

Characteristics of the two TP

ТР	High energy	Low energy
B field [T]	0.5	0.05
Magnet dimensions [mm ³]	6x52x100	3x40x104
E field [kV/mm]	5	2.6
Electrode dimensions [mm ³]	2x100x240	2x30x40
Pinhole dimensions	500 µm x 40 mm	200 µm x 4 mm
Proton range [MeV]	10 – 200	0.1 – 20
Electron range [MeV]	8 – 150	0.1 – 20
Dynamic [MeV ⁻¹ sr ⁻¹]	$10^8 - 10^{14}$	10 ⁸ – 10 ¹⁶
Field of view	~10 mm (4,2mrad)	~2,3 mm (1,25mrad)

B. Vauzour | CEA - NNSA Joint Diagnostic Meeting | June 28-29, 2016

Raw TP spectra expected with SEPAGE (Rear IP)

The radiography cassette

Radiography cassette setup

Stack composed of RCF and filters of various thicknesses and materials

Geant4 simulations of dose deposition inside a stack of 20 RCF

- Proton range: 3 200 MeV
- Film diameter: 95 mm
- Adjustable distance to TCC (min 100 mm)
- Various type of RCF to cover the whole dynamic range
- Stack design adaptable to experiments

B. Vauzour | CEA - NNSA Joint Diagnostic Meeting | June 28-29, 2016

	REQUIRED	SEPAGE
Spectral range	0.1 – 200 MeV	0.1 – 200 MeV
Spectral resolution	1/10	1/10
Dynamic range	10 ⁶ – 10 ¹⁵ p ⁺ /MeV/sr (over the whole spectral range)	$\begin{array}{l} \text{Low energy TP} \\ 10^8 - 10^{16} \text{p+/MeV/sr} \\ \text{High energy TP} \\ 10^6 - 10^{14} \text{p+/MeV/sr} \end{array}$

Radiography cassette (CRACC) available in 2017 for experiments Spectrometer (TP) available in 2018

Overview of the PETAL+ diagnostics

Calibration of the detectors

www.cea.fr

Absolute X-ray calibration of the Imaging Plate

3 different types of IP

G. Boutoux et al. Rev. Sci. Inst. 85, 043108 (2016)

Fading correction Normalized fading functions versus time 0,9 0,8 0,7 Normalized signal 0,6 0,5 0,4 0.3 0,2 MS TR 0,1 SR 0,0 1000 10 100 Time [min]

- Absolute calibration of the 3 different IP for X-rays in the **1-100keV** range
- Good agreement between Geant4 simulations and experimental results
- The present model allows to extend the calibration up to MeV energies

Absolute calibration for protons and electrons have also been realized

⇒ G. Boutoux et al. Rev. Sci. Inst. 86, 113304 (2015) (Electrons)

- \Rightarrow N. Rabhi et al. Rev. Sci. Inst. To be published (2016) (Electrons)
- \Rightarrow T. Bonnet et al. Rev. Sci. Inst. 84, 013508 (2013) (Protons)

Absolute calibration of the RCF

- The PETAL+ project \Rightarrow construction of 3 new diagnostics to detect and characterize the particle produced by PETAL
 - An X-ray spectrometer: SPECTIX
 - An Electrons spectrometer: SESAME
 - An Electrons/Protons/Ions spectrometer: **SEPAGE** + Radiography cassette (**CRACC**)
- **SPECTIX**, **SESAME** and **CRACC** are under construction and will be available in **2017**
- **SEPAGE** will be available in **2018**
- Absolute calibration of the new RCF generation (HD-V2, EBT3, EBT-XD and MD-V3) is in progress

CEA-DAM-DIF: A. Duval, C. Reverdin, B. Rossé, I. Thfoin, L. Lecherbourg,

B. Vauzour, A. Casner, R. Maroni, J.-L. Miquel

CEA-DAM-CESTA : F. Granet, S. Noailles

CEA-DSM-IRFU : J.C. Toussaint, B. Gastineau, D. Leboeuf, A. Chancé,

J.C. Guillard, F. Harrault,, X. Leboeuf, D. Loiseau, A. Lotode, C. Pès

LULI : S. Bastiani-Ceccotti, E. Brambrink J. Fuchs, M. Koenig, J.R. Marquès

LKB : C. Szabo

CEA-DSM-IRAMIS : T. Ceccotti, S. Dobosz-Dufrénoy

CELIA: D. Batani, G. Boutoux, J.E. Ducret, S. Hulin, E. D'Humières,

K. Jakubowska, N. Rabhi

CENBG : L. Sérani

Thank you!!!

Commissariat à l'énergie atomique et aux énergies alternatives	DIF
Centre de Saclay 91191 Gif-sur-Yvette Cedex	DCRE
T. +33 (0)1 69 26 40 00 F. +33 (0)1 XX XX XX XX	SCEP

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019

Cez

Crystal reflectivities and spectrometer resolution

Integrated reflectivities

Spectrometer resolving power (with IP SR)

The detector holders

Geant4 simulations of electron deviation in the presence of the front magnet

Magnetic field: 0,5 T parallel to the X-axis (horizontal), length: 50 mm.

All the electrons with E<100 MeV are deviated before the crystal.

How to get back detectors which are under confinement?

Needs: get back/replace films between two shots.

Constrains :

- maintain the continuity of the confinement
- vacuum limit of the LMJ chamber
- being able to see what we are doing
- resist to the nuclear ventilation system
- adapted to the arm length

Solution:

- Use of the DPTE (Vacuum proof double doors transfer system)
- The solid part is vacuum compatible ·
- Flexible transparent film
- Deformable structure -

Prototype is under construction (CESTA/DLP) and will be implemented on the front window of the SID+ for SPECTIX and SEPAGE, and at the rear of SESAME