High-Resolving-Power, Ultrafast Streaked X-Ray Spectroscopy on OMEGA EP

P. M. Nilson University of Rochester Laboratory for Laser Energetics CEA–NNSA Joint Diagnostic Meeting Rochester, NY 29–30 June 2016

A high-resolving-power, streaked x-ray spectrometer is being developed and tested on OMEGA EP

- The instrument will ultimately be used to measure temperatureequilibration dynamics and material response to ultrafast heating at depth
- The goal is to achieve a resolving power of several thousand and 2-ps temporal resolution
- To understand system performance, a time-integrating survey spectrometer has been deployed on OMEGA EP
- Survey spectrometer measurements and offline testing show
 - focusing fidelity: ~50- μ m line focus
 - several thousand resolving power
 - throughput: $\sim 10^{-7} \text{ ph/ph}$
 - shielding: 5 to 15 cm of lead
- These measurements provide a firm foundation for designing and implementing the time-resolved instrument

Development is underway to deploy the time-resolved instrument on OMEGA EP by Q2FY17.

E25274b

F. Ehrne, C. Mileham, D. Mastrosimone, R. K. Jungquist, C. Taylor, R. Boni, J. Hassett, C. R. Stillman, S. T. Ivancic, D. J. Lonobile, R. W. Kidder, M. J. Shoup III, A. A. Solodov, C. Stoeckl, and D. H. Froula*

> University of Rochester Laboratory for Laser Energetics *also Department of Physics

K. M. Hill, L. Gao, M. Bitter, and P. Efthimion

Princeton Plasma Physics Laboratory

D. D. Meyerhofer

Los Alamos National Laboratory

- Motivation
 - temperature-equilibration dynamics
 - material response to ultrafast heating at depth
- Conceptual design
 - high-resolution spectrometer (HiResSpec)
- Phase I
 - time-integrating x-ray spectrometer
- Phase II
 - time-resolved x-ray spectrometer

Motivation

A high-energy ultrafast laser can heat solid-density material on a time scale much faster than the material expands

- Heating at high density produces exotic states of matter in extreme thermodynamic conditions¹
- The possible extremes in temperature enables novel material and radiative properties experiments²
 - e.g., mean opacity of solar interior matter³
- New diagnostic techniques are sought for testing
 - plasma-dependent atomic processes⁴
 - plasma opacity⁵
 - equation-of-state models⁶

These studies require dense, high-temperature plasmas that are well characterized.

UR

- ²K. Nazir et al., Appl. Phys. Lett. <u>69</u>, 3686 (1996).
- ³J. E. Bailey *et al.*, Nature <u>517</u>, 56 (2015).
- ⁴D. J. Hoarty *et al.*, Phys. Rev. Lett. <u>110</u>, 265003 (2013).
- ⁵R. A. London and J. I. Castor, High Energy Density Phys. <u>9</u>, 725 (2013).
- ⁶M. E. Foord, D. B. Reisman, and P. T. Springer, Rev. Sci. Instrum. <u>75</u>, 2586 (2004).

E21173h

¹A Report on the SAUUL Workshop, Washington, DC (17–19 June 2002).

Motivation

An experimental platform is being developed to study heating of dense matter by laser-generated hot electrons

Multi-Terawatt (MTW) Laser: 10 J, 1 ps Frequency: 1 ω or 2 ω Intensity: >10¹⁸ W/cm²

OMEGA EP Laser System: 2.6 kJ, 10 ps Frequency: 1ω Intensity: >10¹⁸ W/cm²

- Source and coupling: K-line emission Pl's—P. Nilson (LLE)/K. Hill (PPPL)
 - laser-to-electron coupling¹ η_{1-e}
 - mean hot-electron energy² $\langle E \rangle$
 - relaxation rate³ τ_{e}
 - ionization distribution $\langle \mathbf{Z} \rangle$
 - Bulk response: thermal emission PI—C. Stillman (Ph.D. student, DOE SSGF)
 - AI, Fe, and Mg spectroscopy
 - density and temperature: n_e , T_e
- Surface response: XUV emission PI—S. Ivancic (Postdoc, DOE/FES Grant)
 - heat flow and pressure relaxation
 - density and temperature: n_e , T_e

PI: Principal Investigator DOE SSGF: Department of Energy Stewardship Science Graduate Fellowship DOE/FES: Department of Energy/Fusion Energy Science PPPL: Princeton Plasma Physics Laboratory XUV: extreme ultraviolet

¹P. M. Nilson *et al.*, Phys. Rev. Lett. <u>105</u>, 235001 (2010). ²P. M. Nilson *et al.*, Phys. Rev. Lett. <u>108</u>, 085002 (2012). ³P. M. Nilson *et al.*, J. Phys. B 48, 224001 (2015).

E25090c

Motivation

Outer shell ionization affects the energy and shape of the characteristic K_{α} line in a partially ionized plasma

The transition energies are sensitive to the configuration of bound electrons.

- ¹K. Słabkowska *et al.*, High Energy Density Phys. <u>15</u>, 8 (2015).
- ²K. Słabkowska et al., High Energy Density Phys. <u>14</u>, 30 (2015).
- ³G. Gregori et al., Contrib. Plasma Physics <u>45</u>, 284 (2005).
- ⁴P. M. Nilson et al., Phys. Plasmas <u>18</u>, 042702 (2011).
- ⁵J. F. Seely et al., High Energy Density Phys. <u>9</u>, 354 (2013).

Survey Experiments

Survey experiments on the MTW laser have demonstrated temporal spectral shifts on the Cu K $_{\alpha}$ line

Higher ionization and excited states are populated as the plasma heats.

LLE

Conceptual Design

The instrument is based on two diagnostic channels, each with a spherical Bragg crystal

Spectrometer Design

The instrument parameters are set by the expected Cu K $_{\alpha}$ line shifts

Parameter	Requirements
X-ray source size	~100 µm²
Spectral range	7.97 to 8.11 keV
Crystal and Bragg angle	Si220 crystal— Bragg angle = 22.8°
Crystal radius of curvature	330 mm
Crystal size	25 mm × 100 mm
Source-to-crystal distance	2.2 m
Resolving power	~5000—streak-camera limited
Spectral shifts	Few eV to 20-eV K $_{lpha}$ line shifts
Streak-camera slit	6-mm-long, 400- μ m-wide 50- μ m-high-throughput region
Temporal resolution	2 ps

Survey Spectrometer

The Phase I spectrometer was deployed in January 2016 on OMEGA EP for experiments and diagnostic development

Deck 2 modifications

Survey Spectrometer

The Phase I spectrometer was deployed in January 2016 on OMEGA EP for experiments and diagnostic development

Shielding Tests

OMEGA EP data show average background signals per pixel of up to 1000 ADU at 1.65 m from the source

A 5-cm direct line-of-sight lead shielding reduced the background to ~50 ADU.

Crystal Manufacturing

Inrad Optics manufactured the crystal assemblies

• The silicon crystal is 100 μ m thick and 25 mm imes 100 mm in size

UR

 The crystal is optically bound to a glass substrate that is shaped to a radius of *R* = 330 mm

Crystal Tests

The focusing properties and resolving power of the OMEGA EP crystal were measured

- W L $_{\alpha_1}$ line width at 8.3976 keV agrees with the estimated line width of ~7 eV plus the additive width caused by the finite rocking curve width of ~0.48 eV*
- The measured line width did not change as the crystal was masked the curvature is good

Pilatus detector: 172- μ m pixel size

E23452b

^{*}A.-M. Vlaicu et al., Phys. Rev. A <u>58</u>, 3544 (1998).

Spectrometer Measurements

High-power experiments show excellent focusing fidelity, resolving power, and throughput

The Si220 throughput will provide a measurable signal on the PJX-3 streak camera

- The measured throughput is 1.4×10^{-7} ph/ph
- The predicted peak signal at the streak camera is ~1000 ADU per pixel
- Photometric estimates are based on
 - laser energy: 100 J
 - x-ray flash duration: 10 ps
- Shifted spectra are well-matched to the length of the streak-camera slit

UR 🔌

Phase I has provided the foundation for designing and implementing the time-resolved instrument.

Mechanical Design

The Phase II instrument adds a second crystal assembly and the PJX-3 x-ray streak camera for time-resolved measurements

Mechanical Design

Significant shielding assemblies are required for the x-ray streak camera

UR 🔌

Streak-Camera Alignment

Fine adjust along four degrees of freedom is provided near the PJX-3 cathode*

HiResSpec will be deployed in Q2FY17 for commissioning and first high-power shots.

*For detailed tolerance analysis, see D-HS-R-121 Rev A (March 2015).

LLE

Summary/Conclusions

A high-resolving-power, streaked x-ray spectrometer is being developed and tested on OMEGA EP

- The instrument will ultimately be used to measure temperatureequilibration dynamics and material response to ultrafast heating at depth
- The goal is to achieve a resolving power of several thousand and 2-ps temporal resolution
- To understand system performance, a time-integrating survey spectrometer has been deployed on OMEGA EP
- Survey spectrometer measurements and offline testing show
 - focusing fidelity: ~50- μ m line focus
 - several thousand resolving power
 - throughput: $\sim 10^{-7} \text{ ph/ph}$
 - shielding: 5 to 15 cm of lead
- These measurements provide a firm foundation for designing and implementing the time-resolved instrument

Development is underway to deploy the time-resolved instrument on OMEGA EP by Q2FY17.

E25274b

Model Update

Temporal spectral shifts on the Cu K_{α} line in rapidly heated solid matter will validate the spectrometer performance

- Synthetic spectra from hot, dense matter are required
- LSP¹ calculates
 - energy-transport physics
 - electromagnetic-field generation
 - target heating
- LSP is post-processed based on tabulated PrismSPECT² calculations using
 - the local density and temperature at the time of emission
 - line-of-sight and high-T_e opacity effects
- The calculations use an occupation probability model³ and the ionization potential depression formalism of More⁴

¹D. R. Welch et al., Phys. Plasmas <u>13</u>, 063105 (2006).
²Prism Computational Sciences Inc., Madison, WI 53711.
³D. G. Hummer and D. Mihalas, Astrophys. J. <u>331</u>, 794 (1988).
⁴R. M. More, J. Quant. Spectrosc. Radiat. Transf. <u>27</u>, 345 (1982).

E25130c

Spectrometer Measurements

Time-integrated measurements on OMEGA EP show spectral shifts increasing with target energy density

The dispersed x-ray signals are well-matched to the length of the x-ray streak-camera slit.

E25203b