Exceptional service in the national interest

The Ultrafast X-ray Imager (UXI) Program

June 29, 2016

Liam Claus, Lu Fang, Gideon Robertson, Marcos Sanchez, John Porter, Greg Rochau

Mixed Signal ASIC/SoC Products Phone: 505-284-5192 Email: <u>ldclaus@sandia.gov</u> <u>http://www.sandia.gov/mstc/</u>

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-0030 PE

A fast, time-gated, multi-frame, hCMOS camera can offer significant benefits to HEDP diagnostics

- hCMOS imagers can achieve ns level time-gating via electronic shutters
 - Multiple image frames deliver temporal history of experiments
 - Can yield improved SNR by gating out background radiation
 - CMOS scalability provides large detector area and high spatial resolution

A fast, multi-frame imager offers significant potential in HEDP physics research

The UXI program has developed or has experience in the 3 key technologies required for an hCMOS imager

Read-Out Integrated Circuit (ROIC)

Under the UXI program, SNL has developed a portfolio of ROICs demonstrating incremental improvements and features

- 25 µm spatial resolution
- 448-512 x 1024 format
- ~ 2 ns integration time
- 2-4 frames native, 8 frames interlaced
- 500 k 1.5 M e⁻ full well

Hippogriff in SOP package w/ 25 µm Si photodiodes

Detectors

Sandia

National

Under the UXI program, SNL has developed a number of silicon detector variants:

- **25 µm thick** Vehicle for 4.7-6.1 keV X-ray, energetic electron, and visible light detectors
- **100 µm** thick Possibly useful for up to 13 keV X-ray detection (Absorption 30% @ 13 keV)

Hybridization

Indium and Direct Bond Interface (DBI) are both options:

- DBI is licensed by SNL and in development in-house
- DBI off-site at Novati
- Indium available in house

A hybrid sensor enables independent optimization of the diode array & the readout electronics (ROIC).

Fast, silicon detectors were developed at SNL for 6 keV X-ray Sandia response and have show good response to visible light and National Laboratories energetic electrons Visible/Near IR Absorption Depth in Si

1 kn

Practical Si Wafer Thickness Limit for Pixelated Array Detectors (Fab Compatibility)

UXI Limit (Speed)

1200

1400

25

30

1600

Absorption Depth

a/l

 $1 \mu n$

Si photodiodes are cost effective and function well for a variety of spectra ranging from visible to low keV X-rays.

There are ongoing efforts to build III-V detectors for direct detection of higher energy X-rays

- Silicon detectors need to be thick for reasonable X-ray absorption > 10 - 15 keV, which hurts high speed performance of the detector
- III-V detectors offer an order of magnitude improvement in attenuation length

- However, significant challenges exist (discussed at CEA in 10/2015):
 - Thick Growths Growing thick (> 5 μm) epi layers is unusual, process needs development for high-quality growths.
 - Depleting Semiconductor Background carrier concentrations generally higher than Si, more difficult to fully deplete.
 - Fluorescence Incident X-ray photons can eject fluorescence Xray photons with relatively high energy (and thus, relatively long range)
 - Thermal Noise Many III-V (and Ge) materials have bandgaps much lower than Si and need to be cooled to mitigate thermal noise.

Current Efforts

- Very high full well ROIC concepts have been discussed
- GaAs is the III-V detector selected as it offers the best combination of performance and maturity
- Late 2015 and 2016, 2 μm epi material was grown in our MBE chamber to assess material quality:

- 20 μm material has been grown and is currently undergoing similar material quality assessments
- 2 μm and 20 μm epi material will be patterned into discrete devices for testing in late 2016
- GaAs diode arrays available for hybridization to UXI ROICs mid-2017

Aixed Signal

Traditional CMOS camera architecture serves as the starting point for fast framing cameras

- Photodiode acts as the photon-to-electron transducer
- Pixel circuitry converts charge (Q) to a voltage or current
- Support circuitry facilitates decode and readout of the pixel array

xed Signal

C/SoC

A framing camera adds in-pixel storage to deliver multiple "frames" of data

- Multiplexes multiple pixels into one
- Transistor switch acts as an electronic "shutter"
- In pixel storage holds image data during fast sampling operation
- High speed shutters require onchip timing generation
- Custom circuitry distributes these electronic shutters to the pixels

UXI has developed a suite of camera designs that are at various stages of development

	'High' Full Well Sensors				
	In	Use		New Desig	
	Furi	Hippogriff		Daedalus	
Year	FY14	FY15		FY17	
Min. Gate	~1.5 ns	~2 ns		~1.0 ns	
Frames	2	2 (full resolution) 4 or 8 (Row interlaced)		3 (full resolution 6+ (Row interlace	
Tiling Option	No	No		One Side	
CMOS Process	350 r	350 nm (SNL)			
Pixels	448 x 1024			512 x 1024	
Pixel Size	25 μm x 25 μm			25 μm x 25 μ	
Capacitor Full Well	1.5 n	nillion e ⁻		1.5 million	
			_		

TBD

UXI has developed a suite of camera designs that are at various stages of development

	'High' Full Well Sensors			'Low' Full Well Sensors			
	In <u>Use</u>			New Design	In Testing		
	Furi	Hippogriff		Daedalus	Icarus	Acca (test chip)	
Year	FY14	FY15		FY17	FY16	FY18	
Min. Gate	~1.5 ns	~2 ns		~1.0 ns	~1.5 ns	~1 ns	
Frames	2	2 (full resolution) 4 or 8 (Row interlaced)		3 (full resolution) 6+ (Row interlaced)	4 (full resolution) 8 (L/R interlaced)	8	
Tiling Option	No	No		One Side	No	Linear Tiling	
CMOS Process	350 r	ım (SNL)		350 nm (SNL)	350 nm (SNL) 130 nm (G.F.		
Pixels	448	x 1024		512 x 1024	512 x 1024	512 x 512	
Pixel Size	25 μm	n x 25 μm		25 μm x 25 μm	25 μm x 25 μm		
Capacitor Full Well	1.5 n	nillion e ⁻	n e ⁻		0.5 million e ⁻		
				TBD			

Furi was the first large scale 2-D ROIC fabricated in SNL's CMOS7 process

- ROIC features
 - 1024 x 448 pixels on 25 μm pitch
 - 2 frames

Mixed Signal

ASIC/SoC

- < 2 ns integration time</p>
- < 2 ns inter-frame time</p>
- 60 dB dynamic range
- 1.5 M e⁻ full well
- 1500 e⁻ noise floor
- Common anode detector
- Asynchronous triggered, low jitter, fast startup oscillator
- Programmable timing pattern generator
- Timing driven to L/R hemispheres to reduce row RC

Active array size: 11.2 mm x 25.6 mm

Sandia National Laboratories

Furi's primary goal was to investigate high speed timing generation and propagation across a large die

Row Shutter Signal Degradation

Furi was fully functional and delivered significant learning

to the design team

- ROIC accomplishments
 - Fabrication started in September 2012
 - 48.75% yield
 - Largest die fabricated in CMOS7 at SNL
 - All design blocks were fully functional
 - Good image performance to 2 ns T_{int}
 - Currently used by Z-Machine and NIF
- Room for improvement
 - Improve shutter quality at 2 ns
 - Improve minimum shutter speed < 2 ns T_{int}
 - L/R hemisphere timing errors
 - Close to 900 ps
 - 33% L/R hemisphere gain error
 - Frame-to-frame coupling ~10%
 - 50 % F-F gain error at larger input signals
 - IR drop (replacement current)

UXI has developed a suite of camera designs that are at various stages of development

	'High' Full Well Sensors			'Low' Full Well Sensors			
	In Use		New Design		In Testing		
	Furi	Hippogriff	Daedalus		Icarus	Acca (test chip)	
Year	FY14	FY15	FY17		FY16	FY18	
Min. Gate	~1.5 ns	~2 ns	~ 1.0 ns		~1.5 ns	~1 ns	
Frames	2	2 (full resolution) 4 or 8 (Row interlaced)	3 (full resolution) 6+ (Row interlaced)		4 (full resolution) 8 (L/R interlaced)	8	
Tiling Option	No	No	One Side		No	Linear Tiling	
CMOS Process	350 r	nm (SNL)	350 nm (SNL)		350 nm (SNL)	130 nm (G.F.)	
Pixels	448	x 1024	512 x 1024		512 x 1024 512 x 512		
Pixel Size	25 μ n	n x 25 μm	25 μm x 25 μm		25 μm x 25 μm		
Capacitor Full Well	1.5 n	nillion e ⁻	1.5 million e ⁻		0.5 million e ⁻		
			TBD				

Hippogriff was a fast iteration leveraging as much Furi IP as possible while adding interlacing functionality

- ROIC features
 - 1024 x 448 pixels on 25 μm pitch
 - 2 frames

Mixed Signal

SIC/SoC

- < 2 ns integration time</p>
- < 2ns inter-frame time</p>
- 60 dB dynamic range
- 1.5 M e- full well
- 1500 e- noise floor
- Common anode detector
- Improvements/modifications on previous ROICs
 - Added interlacing capability to trade spatial resolution for number of frames
 - Up to 4 rows/8 frames
 - Improved predicted hemisphere timing offsets
 - Integrated anti-bloom transistor in pixel

Hippogriff Block Diagram

Active array size: 11.2 mm x 25.6 mm

Hippogriff was designed to explore adding more frames at relatively low design cost and time

- Hippogriff Implements 2 Special Timing Modes:
 - **1.** Row Interlacing: Allows a user to trade spatial resolution for additional

Hippogriff was designed to explore adding more frames at relatively low design cost and time

- Hippogriff Implements 2 Special Timing Modes:
 - **1. Row Interlacing:** Allows a user to trade spatial resolution for additional

	names.					
Row	No Interlacing	4-Frame Interlacing	8-Frame Interlacing			
1 2 3				Frames 1 & 2	# Frames	Frame Resolution
4 5				Frames 5 & 6	2	1024 x 448
6 7				Frames 7 & 8	4	512 x 448
8] —	8	256 x 448

2. Zero Dead Time ("Movie") Mode:

- Suitable for use only fastest T_{int} configuration
- Provides approximately zero dead time between frames
- Note that this is implemented with relatively crude circuits.

framos

Hippogriff demonstrated that our interlacing concept worked

- **ROIC** accomplishments
 - Fabrication started in April 2013
 - 30.2% yield
 - Improved L/R timing errors by ~50% (200-500 ps)
 - Interlacing feature works
 - Good image performance to 2 ns T_{int}
 - Currently in use in SNL Z facility laser test chambers
- Room for improvement
 - Similar performance to Furi at 2 ns T_{int}
 - Movie mode had significant R-R and F-F variation
 - Still have L/R hemisphere timing errors (up to 500 ps)
 - Same L/R hemisphere gain errors Furi
 - Same frame-to-frame coupling as Furi

300

frame 1 (left

rame 2 (lef

300

250

200

100 50

(J m)

exposure 150 frame 3 (left

me 1 (right)

frame 2 (right)

UXI has developed a suite of camera designs that are at various stages of development

	'High' Full Well Sensors				
	In	Use		New Design	
	Furi	Hippogriff		Daedalus	
Year	FY14	FY15		FY17	
Min. Gate	~1.5 ns	~2 ns		~ 1.0 ns	
Frames	2	2 (full resolution) 4 or 8 (Row interlaced)		3 (full resolution) 6+ (Row interlaced)	
Tiling Option	No	No		One Side	
CMOS Process	350 r	חm (SNL)		350 nm (SNL)	
Pixels	448	x 1024		512 x 1024	
Pixel Size	25 μm x 25 μm			25 μm x 25 μm	
Capacitor Full Well	1.5 n	nillion e ⁻		1.5 million e ⁻	

'Low' Full Well Sensors			
In Testing			
lcarus	Acca (test chip)		
FY16	FY18		
~1.5 ns	~1 ns		
4 (full resolution) 8 (L/R interlaced)	8		
No	Linear Tiling		
350 nm (SNL)	130 nm (G.F.)		
512 x 1024	512 x 512		
25 μm x 25 μm			
0.5 million e ⁻			

Icarus represented somewhat of a departure from the previous ROICs

- ROIC features
 - 1024 x 512 pixels on 25 um pitch
 - 4 frames
 - < 2 ns integration time</p>
 - < 2ns inter-frame time</p>
 - 60 dB dynamic range
 - 500 ke⁻ full well
 - 500 e⁻ noise floor
 - Common Cathode detector
- Improvements/modifications on previous ROICs
 - Tunable anti-bloom transistor
 - Fully independent hemisphere timing
 - No row-wise interlacing
 - Increased HST generator pattern register depth to 40 bits
 - L/R hemisphere shutter timing tuning capability
 - Shorted intermediate reptree output stages to improve R-R timing error
 - Top/Bottom readout channels
 - CC pixel allows a more robust power distribution architecture
 - Incorporated on chip bypass capacitors

Active array size: 12.8 mm x 25.6 mm 19

Icarus was a refinement on timing and improvement to the pixel design and power rails

Anti-bloom Transistor Performance Sim

Timing Distribution

Icarus has undergone initial electrical testing and is close to

first photons-on-camera characterization

- ROIC accomplishments
 - Fabrication started in April 2013
 - 45% yield
 - Independent L/R timing works
 - Native L/R timing errors improved
 - L/R tuning operates as expected so L/R timing error has been minimized
 - All timing modes work to 1:1 timing but can't build shutter profiles without photon testing
- Room for improvement
 - Need image testing to verify:
 - L/R gain errors
 - Row skew
 - Shutter profiles
 - F-F coupling
 - Photodiode design issue encountered
 - Shorted middle two columns of photodiodes to VSS
 - Short term fix

Aixed Signal

SIC/SoC

- Etched out shorted columns from existing camera wafers
- Redesigned photodiodes are in fab now
- Short-term fix packaged Icarus should be delivered 07/01/16
- Complete fix Icarus should be delivered Q1, FY17

0.6

Tuning Voltage (V)

0.8

12

14

10

1.2

0

Vreadout

1.0

0.0

0.2

0.4

0.6

0.2

0.4

Icarus Timing Tuning Electrical Test Results

0.8

Vrst

16

UXI has developed a suite of camera designs that are at various stages of development

	'High' Full Well Sensors				
	In	Use		New Des	
	Furi	Hippogriff		Daedal	
Year	FY14	FY15		FY17	
Min. Gate	~1.5 ns	~2 ns		~1.0 n	
Frames	2	2 (full resolution) 4 or 8 (Row interlaced)		3 (full resolu 6+ (Row inter	
Tiling Option	No	No		One Sid	
CMOS Process	350 nm (SNL)			350 nm (
Pixels	448 x 1024			512 x 10	
Pixel Size	25 μm x 25 μm			25 μm x 2	
Capacitor Full Well	1.5 n	nillion e ⁻		1.5 millio	

	'Low' Full Well Sensors						
Design	In Tes	In Testing					
dalus	Icarus	Acca (test chip)					
/17	FY16	FY18					
0 ns	~1.5 ns	~1 ns					
esolution) v interlaced)	4 (full resolution) 8 (L/R interlaced)	8					
Side	No	Linear Tiling					
n (SNL)	350 nm (SNL)	130 nm (G.F.)					
a 1024	512 x 1024	512 x 512					
x 25 μm	25 μm x	25 μm x 25 μm					
illion e ⁻	0.5 mill	0.5 million e ⁻					

TBD

Daedalus is leveraging all the test data and learning we have obtained to date to improve on previous ROIC performance

- ROIC features
 - 1024 x 512 pixels on 25 μm pitch
 - 3 frames
 - < 1.5 ns integration time</p>
 - < 1.5 ns inter-frame time</p>
 - 70 dB dynamic range
 - 1.5 M e- full well
 - 500 e- noise floor
 - Common Cathode detector
- Improvements/modifications on previous ROICs
 - Serial encoded shutter clock distribution concept with row-wise shutter generation
 - Infinite interlacing capability
 - Improve row timing skew to <150 ps
 - 1 side abutable for a 512 x 2048 possible tiled imager
 - Test vehicle for through silicon via development

Active array size: 12.8 mm x 25.6 mm

Daedalus design is well underway and we anticipate a July/August tape-out date

Daedalus Shutter Timing Concept

UXI has developed a suite of camera designs that are at various stages of development

	'High' Full Well Sensors					
	In	Use		New Design		
	Furi	Hippogriff		Daedalus		
Year	FY14	FY15		FY17		
Min. Gate	~1.5 ns	~2 ns		~1.0 ns		
Frames	2	2 (full resolution) 4 or 8 (Row interlaced)		3 (full resolution) 6+ (Row interlaced)		
Tiling Option	No	No		One Side		
CMOS Process	350 r	וויז (SNL)		350 nm (SNL)		
Pixels	448	x 1024		512 x 1024		
Pixel Size	25 μm x 25 μm			25 μm x 25 μm		
Capacitor Full Well	1.5 n	nillion e ⁻		1.5 million e ⁻		

'Low' Full W	ell Sensors				
In Tes	ting				
lcarus	Acca (test chip)				
FY16	FY18				
~1.5 ns	~1 ns				
4 (full resolution)	8				
8 (L/R interlaced)	Ū				
No	Linear Tiling				
350 nm (SNL)	130 nm (G.F.)				
512 x 1024 512 x 512					
25 μm x	25 μm x 25 μm				
0.5 million e ⁻					

TBD

Acca is a major departure in architecture/technology and will carry the program during the CMOS7 6"-8" conversion

- Design goals
 - **512 x 512** pixels on 25 μm pitch
 - 8 frames
 - < 1 ns integration time</p>
 - < 1 ns inter-frame time</p>
 - 500 k e- full well
 - 500 e- noise floor
 - 60 dB dynamic range

Improvements/modifications on previous ROICs

- GF 130 nm bulk Si technology
- CML H-tree timing distribution
- In-pixel timing generator
- 2-side abutable architecture
- Concerns and issues
 - Bulk vs. SOI radiation performance
 - MOSCAPs have a non-linear response and poor leakage
- Status

Aixed Signal

SIC/SoC

 Test chip containing individual blocks of circuitry has been fabricated and is in packaging and awaiting testing

GF 130 nm Density Compared to CMOS7

	Hippogriff	Icarus	Acca (IBM)
Transistors / Pixel	12	14	148
Analog Storage	2 X 250 fF MIM	4 X 75 fF MIM	8 X 40-140 fF MOS

Acca Test Chip

Recent results from the UXI hCMOS imagers

Z Facility (SNL): Pecos test chamber and Magnetized Liner Internal Fusion

Hippogriff Gas Cell Shadowgraphs in "Pecos" Test Chamber (4ns-4ns Timing)

in Z-Machine (9ns -1ns Timing)

• NIF (LLNL): Gated Laser Entry Hole (G-LEH)

The UXI program has created a roadmap for ROIC, detector, in Sandia and camera system development that meets the needs of the National Diagnostics Initiative

- Program Focus Areas
 - Existing Camera Support (Furi/Hippogriff)
 - Z-machine and NIF
 - FPA production and delivery
 - SLOS Pulse Dilation 10ps Imager
 - Collaboration with General Atomics
 - Icarus FPA system development
 - ROIC Design
 - Next generation ROICs
 - Detector Development
 - High energy X-ray detection
 - Low energy X-ray/electron (NASA collaboration)

BACKUP

UXI has developed a suite of camera designs that are at various stages of development

	'High' Full Well Sensors				
	In	In Use			
	Furi	Hippogriff		Daedalus	
Year	FY14	FY15		FY17	
Min. Gate	~1.5 ns	~2 ns		~1.0 ns	
Frames	2	2 (full resolution) 4 or 8 (Row interlaced)		3 (full resolution) 6+ (Row interlace	
Tiling Option	No	No		One Side	
CMOS Process	350 r	350 nm (SNL)			
Pixels	448 x 1024			512 x 1024	
Pixel Size	25 μm x 25 μm			25 μm x 25 μ	
Capacitor Full Well	1.5 n	1.5 million e ⁻			

	'Low' Full W	'Low' Full Well Sensors	
gn	In Tes	In Testing	
s	Icarus	Acca (test chip)	
	FY16	FY18	
	~1.5 ns	~1 ns	
n) ed)	4 (full resolution) 8 (L/R interlaced)	8	
	No	Linear Tiling	
IL)	350 nm (SNL)	130 nm (G.F.)	
4	512 x 1024	512 x 512	
μm	25 μm x	25 μm x 25 μm	
e⁻	0.5 mill	0.5 million e ⁻	

TBD

There are at least two obvious solutions to dealing with the large photocurrents a ROIC will experience under high energy fluence

Anti-Bloom

Introduce/utilize anti-bloom transistor to compress signal at large signal levels.

(-) Might be a reasonable first candidate, however, readout circuitry begins to limit the DR with existing cameras

Increase Full-Well

Increase the size of the analog storage capacitor.

(+) This solution is a good candidate, however, speed and area impacts need further study

Capacitive Charge Division

Introduce a charge dividing capacitor on the front-end of the ROIC.

(+) This solution is a good candidate, however, will need to look at impacts to reset and analog signal levels.

Sandia National

Laboratories

Horus will attempt to integrate as much capability as possible while working towards a monolithic SoC

- ROIC features
 - 1024 x 512 pixels on 25 μm pitch
 - TBD # of frames
 - 1 ns integration time
 - 1 ns inter-frame time
 - 60 dB dynamic range
 - TBD e- full well
 - 500 e- noise floor
 - Common Cathode detector
- ROIC features and iterative goals
 - Resolve any learning or suspected issues with Daedalus
 - Quadrant level independent timing
 - On chip ADCs will be investigated
 - Digital SPI interface to simply system design
 - 1 side abutable design like Daedalus

Horus Block Diagram

TBD

Sandia

Multiple efforts at SNL and at other organizations are active in the realization of these FPAs and imaging systems

Sandia National Laboratories

- Sandia Efforts and Team Members
 - (MESA) Microsystems S&T & Components
 - ROIC Design/ Program Management
 - Photo-diode Design, Modeling and Testing
 - Fabrication, Packaging, Integration, and ATE Testing
 - Radiation Performance
 - Pulsed Power Sciences Center
 - Camera System Development
 - Camera System Integration
 - Camera System Testing
- National Diagnostics Initiative Partners
 - Lawrence Livermore National Labs
 - Laboratory for Laser Energetics
 - General Atomics
- Industry Partners
 - Ziptronix 3D ROIC to detector hybridization
 - Daisho FPA package fabrication
 - Delta/Corwil FPA package assembly and population

The UXI program will continue to leverage the unique capabilities at MESA for the development of next generation imaging systems for an expanding ICF/HED user base

- Areas of Investment/Development
 - Integration
 - In-house DBI and Indium hybridization for CMOS7 ROICs/detectors
 - Through silicon vias for power distribution and sensor abutment
 - Boutique Detectors
 - III/V materials
 - Integrated charge gain modification / charge shunting devices
 - ROIC Design
 - High speed radiation hardened pixels (8-10 bits in ~100ns)
 - 180nm CMOS8 designs

New Interests !!

Sandia National Laboratories

