hCMOS Flat Fielding and Characterization

CEA-NNSA Joint Diagnostic Meeting

Arthur Carpenter LLNL - NIF Target Diagnostic

June 29th, 2016

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Motivation: Develop a Single Line of Sight Diagnostic Platform

- Improved X-ray optics will require multiple images from the same Line of Sight

 — X-ray Optics: Wolter, Toroidal, Crystal Backlighter Imager (CBI), Kirkpatrick-Baez optic (KBO), etc.
- The Single Line of Sight Diagnostic (SLOS) platform combines 3 diagnostic (DIXI, GLEH, hGXD)
- Detailed understanding of image the sensor is required for successful integration

Objectives:

Understand Sensor and Integrate into NIF

- Understand the performance of the hCMOS image sensors
 - Quantify pixel level response
 - Feedback results to SNL to aid in future FPA development
 - Develop correction methods and determine performance limitations
- Step 1:Understand hCMOS Sensors
 - Build up a fully automated lab
 - Build camera boards to run sensor
- Step 2: Build NIF Rad-hard Camera
 - Évaluate Rad-hard components
 - Test Design in NIF environment
- Step 3: Integration
 - Package Diagnostic in Airbox
 - Field System in NIF

SLOS Concept for use on NIF

Outline

- Results from Furi characterization (Step 1)
 - Objectives, experimental setup and automation
 - Gate profiles, gain non-uniformity, timing skew, and linearity
- Plan for future sensor characterization (Step 1)
 - Experimental setup and facility
 - Motivation for Improved Automation
- Radiation hardened cameras for use in NIF (Step 2)
- NIF neutron radiation environment testing capabilities (Step 2)
- SLOS hCMOS integration (Step3)

Furi Characterization

- Generate pixel level response profiles and timing delays for the Furi sensor
- Scan 2ps laser pulse in time over the gating window for the sensor
- Linearity: Hold timing constant and vary intensity of pulse using ND filters
- Analysis and Results
 - "Flat Field" pixel sensitivity at any given point in the gate profile
 - Rise time, fall time, and FWHM of each pixel's gate profile
 - Timing skew of pixels

This process will result in an amplitude response and turn on delay for every pixel in the sensor

Laser Lab Setup at NSTec Livermore

Laser Beam Uniformity: SI1000 Beam Image

A gate profile is generated by walking laser pulse over gate window

Real Time Gate Profiles: 10-10 Data for ROI: 224-224

Rising Edge Movie: 20ps steps 2-2 Timing Mode

Quadrant Gate Profiles: 10-10 timing mode

Quadrant Gate Profiles: 2-2 Timing Mode

		Frame 00		Frame 01			symr
		50%Peak (ns)	FWHM (ns)	50%Peak (ns)	FWHM (ns)		- O y i i ii
	q1	78.7	2.5	83.0	1.4	q1	
LH2	q2	78.8	2.0	83.0	1.4	q2	LH2
	q3	79.4	2.4	82.9	2.0	q3	
кпэ	q4	79.4	2.1	82.7	2.1	q4	RHS

Note that the rising edge was faster than the falling edge which may have led some to minor measurement errors since the fit function assumed symmetry

Linearity Check: A ROI representative of typical shot data was used

- 1. Test was done in Timing Mode 8-2
- 2. Taken at in the middle of the gate profile for all frame quadrants, T= 82.6ns

Due to beam speckle, some pixels exceeded the full-well capacity before others which likely skewed the response. The test mimicked a use scenario with a small active area and wide ranging intensities.

Furi Testing at NSTec vs. Icarus Testing at LLNL

- Furi testing at NSTec:
 - 8 gate profiles (of ~170)

 - Camera board readout:
 ~2.5min per point
 - Duration: ~4 weeks
- Icarus vs Furi:
 - -4 vs. 2 frames
 - 32 vs. 14 readout channels
 - Two 40-bit vs. One 20-bit frame patter registers
 - 512 vs. 448 columns

- Icarus Testing at LLNL
 - Up to 780 gate profiles
 - 100 points per profile
 - <u>3250!</u> hours at 2.5min per point
 - **130** hours at 10s per point
- Sandia's new RevC Camera Board is Faster!

Sensor characterization requires fast, automated, data collection

LLNL Framing Camera Laser Lab: Fully Automated Characterization Facility

- Use Framing Camera Laser EKSPLA PL2230 ND:YAG — 532nm and 213nm output
- Similar setup used at General Atomics for characterizing pulse dilation photocathode and drift tube
- Python Control Scripts Automate
 - Camera Readoff
 - 3 Delay Generators
 - 12GHz Scope
 - Low Voltage Power Supply
 - Energy meter
 - Any new equipment as needed

EKSPLA PL2230 ND:YAG Laser

Parameter	Value		
Pulse energy at 1053nm	>40mJ		
Pulse energy at 532nm	18mJ		
Pulse energy at 355nm	12mJ		
Pulse energy at 266nm	5mJ		
Pulse energy at 213nm	2mJ		
Pulse duration (FWHM)	28ps		
Pre-pulse contrast	> 200:1		
Triggering mode	internal/external		
Beam diameter	~6 mm		

LLNL Framing Camera Laser Lab: Laser and Controls Setup for hCMOS Sensor Characterization

Rad-hard Cameras for use in NIF

 Camera electronics must operate in >5e10 n/cm² environments

— Commercial electronics to fail at a fluence >5e9 n/cm²

- LLNL is building and testing neutron hardened camera systems
 - Off shot pomponent testing at Cobham is under a for 1st prototype

NIF On Shot Radiation Test Facilities

 Neutron Test Well (4.5m) — Twisted pair and coax cables DIM Based Camera Test Box (1.5m) — Twisted pair, MM fibers, and cooling water Neutron Effects Diagnostic (0.1m) - Twisted pair

Integrate Camera System into SLOS1 Diagnostic

- SLOS1 Integrates:
 - Pinhole Array or a Crystal Backlighter Imager (CBI) X-ray Optic
 - The Icarus sensor in the chamber vacuum
 - LLNL built camera system

The SLOS diagnostic system can be fielded in many configurations

Acknowledgements

- The Nanosecond Gated hybrid CMOS Group at Lawrence Livermore National Lab
 - Matthew Dayton, Chris Macaraeg, Brad Funsten, Pat Gardner, Sabrina Nagel, Brian Pepmeier, Bill Thompson, John Celeste, Jeremy Hill, Ken Charron, Perry Bell
- The Ultrafast X-ray Imaging Group from Sandia National Lab
 - Brandon Mitchell, Liam Claus, Marcos Sanchez, Lu Fang, Gideon Robertson, John Porter, Greg Rochau
- General Atomics
 - Terrance Hilsabeck
- National Security Technologies, Livermore Operations — Andrew Mead

Backup Slides

- SLOS Drift Tube Concept
- Peak Response Ratio from 8 timing modes
- Furi Photon Transfer Curve
- Gate Profile for 10-10 timing mode in quadrants
- Gate Profile Fitting Equation
- Furi Movie and Raw points for Rising Edge of Gate
- Furi Colum Timing Skew
- Detailed Icarus Test Plan

SLOS Drift Tube Concept of Operation

Ratio of peak response from Frame0 to Frame1 varies with timing mode

Every timing mode must be characterized

Furi Photon Transfer Curve

The ADC gain cannot be derived graphically since the system is not shot noise limited at any point.

Gate Profiles for any number of ROIs can be generated (10-10 timing mode shown)

 Minimum recommended ROI size is 2x2

 At the individual pixel level beam speck movement causes errors in analysis

Furi

Gate Profile Fitting Equation

- Fit method: Two Sigmoids
 - Allows for flat tops needed for longer timing modes
 - Tau was equal for both sigmoids to reduce processing time
 - Different rising and falling edge rates could be used in the future

 $f(t) = A/1 + exp(-t-t1/\tau) - A/1 + exp(-t-t2/\tau)$

Example Fitting Parameters

	А	t1	t2	tau
f0q1	0.160178	7.85E-08	8.91E-08	5.30E-10
f1q1	0.153915	9.83E-08	1.08E-07	4.99E-10
f0q2	0.144384	7.85E-08	8.91E-08	5.28E-10
f1q2	0.13709	9.82E-08	1.08E-07	4.76E-10
f0q3	0.16814	7.97E-08	8.97E-08	7.99E-10
f1q3	48.82261	1.04E-07	1.04E-07	2.31E-09
f0q4	0.156966	7.96E-08	8.96E-08	7.33E-10
f1q4	0.149829	9.94E-08	1.09E-07	7.06E-10

Example Results

	Peak	FWHM	RT	t1: 10%Peak	t2: 50%Peak
f0q1	0.160263	1.06E-08	2.33E-09	7.74E-08	7.85E-08
f1q1	0.153963	9.65E-09	2.18E-09	9.72E-08	9.83E-08
f0q2	0.144372	1.06E-08	2.32E-09	7.73E-08	7.85E-08
f1q2	0.13708	9.70E-09	2.10E-09	9.72E-08	9.82E-08
f0q3	0.167486	9.98E-09	3.48E-09	7.80E-08	7.97E-08
f1q3	0.154568	9.27E-09	3.14E-09	9.79E-08	9.95E-08
f0q4	0.156621	1.00E-08	3.21E-09	7.80E-08	7.96E-08
f1q4	0.149409	9.29E-09	3.09E-09	9.78E-08	9.94E-08

Edge Scan 20ps steps for Profile Movie

Lawrence Livermore National Laboratory

Gate Profile Movie 2-2 Timing Mode

Furi Column Timing Skew 2-2 timing mode

Detailed Icarus Test Plan

Test Type	Variables	Description
GP	Nominal OC	Gate profiles, use divA and divB for shutter monitors
GP	Hemi	Hemisphere timing gate profiles skew, with additional scope for other monitors, make sure scope interpolates
GP	Vrst	Vrst scan, profiles
GP	Vpd	Vpd 50V to 2V, profile
JIT	Nominal OC	Jitter measurement, No images needed. Could be extracted from Gate profile data, but cleaner this way
PTC	block edge loc	PTC (linearity and FW)
PTC	block edge loc	MTF (contrast edge) same software as PTC
PTC	V-ab	anti-bloom scan, PTC w/VAB

Laser Beam in Camera Box

LLNL X-ray Timing Lab

LLNL-PRES-XXXXX

Python GUI