DE LA RECHERCHE À L'INDUSTRIE

LMJ program & Diagnostics plan

J.L. MIQUEL Program leader, Laser-plasma experiments CEA, DAM, F-91297 Arpajon, France

www.cea.fr

Laser MegaJoule main characteristics

4 Laser bays

Glass Neodymium laser, frequency tripled : $\lambda = 0.35 \,\mu m$

Designed for 240 beams, 176 will be installed

Laser energy ~ 1.5 MJ, Power ~ 400 TW
 Pulse duration : from 0.7 to 25 ns

Target bay

Biological protection : 2 m thick concreteTarget chamber Ø 10 m

200 ports for laser beams and diagnostics

Ignition target

2 X 2 cones irradiation : 33° & 49°
Hohlraum length ~ cm
Capsule Ø ~ 2 mm

DT cryogenic layer

LMJ Schedule : the "3 thirds rule"

Three main activities are performed during the year

- Mounting of new bundles
- Activation / qualification of the previous mounted bundles
- Plasma experiments

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1 st Shift		Mounti	ng		Mountir	ıg						
2 nd Shift	Q	Activat pualifica	ion Ition	H	xperime	ents	Mou	inting				

Only one shift is dedicated to experiments => 1 shot/day during less than 4 months

50 Physics shots + 30 preparation shots (Diagnostic qualification, pointing, synchro, ...)

Other activities can impact the schedule :

- Preparation for maintenance of activated equipment
 - Due to high energy particles generated by PETAL shot in 2017
- => no experiments at the end of 2016

Cea The 8 experimental topics of the Simulation Program

7-Ignition

Study of different kind of ignition targets Control of DT burning

8-Applications

Coupling of an ignition target with another target

Control of complex powerful system

J-L. Miquel CEA/DAM/DAN

| June, 29th 2016

Cea The 6 experimental configurations of Laser MegaJoule

- 1st configuration: 1 laser bundle **2 SID**
 - **4 diagnostics**

Total Energy = 25 kJ

Target bay : 1st configuration equipment (today)

J-L. Miquel CEA/DAM/DAN

CZZ

The 6 experimental configurations of Laser MegaJoule

2nd configuration: 2 laser bundles (+ PETAL)

Total Energy = 60 kJ

Particles

3 SID

22

9 diagnostics

Target bay : 2nd configuration equipment - 2017

Ce The 6 experimental configurations of Laser MegaJoule

3rd configuration: 5 laser bundles (+ PETAL) 4 SID 13 Diagnostics

X-ray Dia	agnostics	Optical	Particles	
Imagers	Spectro.	Diagnostics	Diagnostics	
GXI-1	DMX	FABS1	SESAME	
GXI-2	miniDMX	EOS pack	SEPAGE	
SHXI	SPECTIX			
SSXI				
ERHXI				
UPXI				

Total Energy = 150 kJ

Target bay : 3rd configuration equipment - 2018

J-L. Miquel CEA/DAM/DAN

Cea The 6 experimental configurations of Laser MegaJoule

4th configuration : 7 to 9 laser bundles (+ PETAL) Total Energy = 250 to 320 kJ ■ 3rd order « symmetry » (then 4th) => First Implosion (D₂/Ar gas) and neutron production 5 SID **X-ray Diagnostics** Optical **Particles**

19 Diagnostics

Cea The 6 experimental configurations of Laser MegaJoule

5th configuration : 11 to 21 laser bundles (+ PETAL) Total Energy = 530 kJ to 1 MJ
 ■ Low Temp. target positioning system, 5th order axial symmetry => Ignition preparation
 6 SID

26 Diagnostics

X-ray Dia	agnostics	Optical	Particles	
Imagers	Spectro.	Diagnostics	Diagnostics	
GXI-1	DMX	FABS1&2	SESAME	
GXI-2	miniDMX	NBI	SEPAGE	
SHXI	SPECTIX	EOS pack	Neutron pack	
SSXI	HRXS	Thomson	Neutron pack	
		Scattering	2	
ERHXI	SRSXS			
UPXI-LPXI	miniDMX2			
GSXI	SRHXS			
SHXI-2				
GXI-3				

Cea The 6 experimental configurations of Laser MegaJoule

6th configuration : 22 laser bundles (+ PETAL) Total Energy = 1,5 MJ ■ Cryogenic target positioning system, Full axial symmetry => Ignition Milestone Up to 10 SID 26+ Diagnostics X-ray Diagnostics Optical Particles

X-ray Dia	agnostics	Optical	Particles	
Imagers	Spectro.	Diagnostics	Diagnostics	
GXI-1	DMX	FABS1&2	SESAME	
GXI-2	miniDMX	NBI	SEPAGE	
SHXI	SPECTIX	EOS pack	Neutron pack	
SSXI	HRXS	Thomson Scattering	Neutron pack 2	
ERHXI	SRSXS			
UPXI-LPXI	miniDMX2			
GSXI	SRHXS			
SHXI-2				
GXI-3				

J-L. Miquel CEA/DAM/DAN

October 2014: The first LMJ Campaign Dynamics of slot closure

Demonstrate LMJ abilities to perform experiments for Simulation program

- Slot dynamics is diagnosed by auto-radiography
- **First shot with Ta₂O₅ aerogel sample, 200 μm thickness**

Details of the phenomena are well predicted by simulations

Late phenomena of the closure dynamics

15

J-L. Miquel CEA/DAM/DAN

Rochester

| June, 29th 2016

2015 - Asymmetrical implosion

The egg shape, predicted by simulation, is due to the anisotropic distribution of the drive around the capsule.

2015 – Technological Singularity 50 µm 18 µm Effect of a technological singularity present on a laser target ■ Shock propagation in Ta₂O₅ disk (radiographic contrast) including the singularity. Shocks coalescence and inversion of the defect, which leads to a jet of material in a foam. ■ Multi-time late radiography of the jet. Grid Jet X-ray Radiography **O28H** Tube. CH Foam $\Delta t = 18 \text{ ns}$ 21 ns 24 ns 27 ns Grid (Spatial reference)) Simulation 1,6 Ta₂O₅ disk E laser ~ 11.5 kJ 1,5 Position of the tip of the jet (mm) with central defect points expérimentaux #5 1,4 8 kJ **Q28B** 1,3 #1 1,2 11 kJ X Radiography of the jet #6 1,1 #4 6,5 kJ (Hard X-ray Imager GXI-1) 1 #3 9 kJ 0,9 10.5 kI #2 0,8 11 kJ 0,7 0,6 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 time (ns) | June, 29th 2016 J-L. Miquel CEA/DAM/DAN Rochester 18

High sensitivity to the sample characteristics (thickness, slot width, ...)

J-L. Miquel CEA/DAM/DAN

Continuation of the program

Radiation transport

- **Radiative balance in hohlraums 2016**
- **Radiative propagation in a close sub-sonic regime 2017**
- **Radiative propagation in inhomogeneous media -2017**
- Rosseland opacities 2017

Hohlraum energetics

- Characterization of magnetic fields 2017 (Academic access)
- X-ray conversion on the rear face of target 2018
- Laser-Plasma Interaction in gas hohlraum 2019

EoS

■ Reference materials (Quartz, Al, diamond) and low-Z materials (B, HLi) – 2019

Implosion hydrodynamics

- Corrected asymmetrical implosion 2017
- **1D** planar hydrodynamics 2018
- **D**₂ capsule implosion (neutron production) 2019

Hydrodynamics Instabilities

Turbulence in shock tube - 2018

Ceal Access of the Academic Community to LMJ-PETAL

Opening policy

■ The CEA-DAM has promoted for several decades collaboration with national and international scientific communities

Between 2005 and 2014, access to the LIL facility has been given to the scientific community

With the LMJ and PETAL facilities, the CEA-DAM is once again in a position to welcome national and international teams.

■ LMJ-PETAL User Guide (+ Diagnostic forms) provides the necessary technical references for the writing of Letter of Intent of experimental proposals to be performed on LMJ-PETAL.

- Regularly updated version of this User guide is available on LMJ website at : <u>http://www-lmj.cea.fr/en/ForUsers</u>
- Academic access and selection of the proposals are coordinated by Institut Laser & Plasmas (ILP) with the help of the International Scientific Advisory Committee of PETAL.

A direct access to LMJ-PETAL is also possible through NNSA-CEA collaboration

GXI-1

Academic experiments

First call for experiments:

■ The first configuration (end 2016) includes 4 quads and the PETAL beam

4 experiments selected (2017-2018) among 16 proposals

- Amplification of B fields in radiative plasmas : Magnetogenesis and turbulence in galaxy
 - PI : Prof G. Gregori Department of Physics, University of Oxford
- Interacting radiative shock : an opportunity to study astrophysical objects in Laboratory
 PI : Dr M. Koenig – LULI, Ecole Polytechnique
- Study of the interplay between B field and heat transport in ICF conditions,
 - Dr R. Smets LPP Ecole Polytechnique
- Strong Shock generation by laser plasma interaction in presence or not of laser smoothing
 - PI : Dr. S. Baton LULI, Ecole Polytechnique ; X. Ribeyre CELIA, Univ. Bordeaux

Second call: launched on April 2016

- First selection by experts of the ISAC-P (International Scientific Advisory Committee of PETAL), organized by the Institute Lasers et Plasmas (ILP) : September 2016.
- After this pre-selection, the deposit of the full proposals will be asked for December 2016.
- → The experiments will take place in 2019 and 2020, with 14 quads and 16 diagnostics.

UNIVERSITY OF

OXFORI

Plasma diagnostics installed on LMJ

Name	Characteristics	Needs	Position
GXI-1	Gated hard X-ray imager, Space resolution = $35 \mu m$ Field of view: 3 mm	2D X-ray image	SID
GXI-2 (GXI-1 like)	Gated hard X-ray imager, Space resol. = 150 or 50 µm Field of view: 15 mm or 5 mm	Beams pointing monitoring	SID
DMX	Broad-band X-ray spectrometer, temporally resolved	Primary hohlraum radiative temp.	MS D9 (D8 in 2018)
Mini-DMX	Mini Broad-band X-ray spectrometer, temporally resolved	Secondary hohlraum radiative temp.	SID

GXI-1 (and 2), Gated X-ray Imager 1 (and 2)

Characteristics	Spectral range	Spatial resolution (µm) / Field of view (mm)	Time resolution (ps) / Dynamic (ns)
Magnification = 4.3 (0.9)			
2x4 time-resolved toroidal mirror channels	0.5 - 10 keV	35/3 (150/15)	110 - 130 / 20
4 pinhole (refractive lenses) channels	2 (6) - 15 keV	40/3 (150/15)	110 – 130 / 20
1 time-integrated mirror channel	0.5 - 10 keV	50/5 (140/20)	without

Cea DMX, Broad-band X-ray Spectrometer

Characteristics	Spectral range (resol. E/∆E)	Spatial resol. (µm) / Field of view (mm)	Time resol.(ps) / Dynamic (ns)
20 time-resolved broad-band channels	0.03 - 20 keV(5)	- / 5	150 / 10 ⁵
Grating X-ray spectrometer $Dl < 1$ Å	0.1 - 1.5 & 1.5 - 4 keV		17/2 to 120/25
Laser Entrance Hole Imager	0.5 - 2 keV	100 / 5	500/20
X-ray Power	0.1-2 , 2-4 & 4-6 keV	- / 5	150 / 105

- a time resolved soft X-ray broad-band spectrometer (20 channels combining mirror, filters, X-ray diodes)
- a time resolved soft X-ray spectrometer (gratings and streak camera)
- a laser entrance hole imaging time resolution planned
- a time resolved X-ray power measurement spectrally integrated.

Cea

Mini-DMX, Mini-Broad-band X-ray Spectrometer

Characteristics	Spectral range (resol. $E/\Delta E$)	Spatial resol. (µm) / Field of view (mm)	Time resol. (ps) / Dynamic (ns)
16 time-resolved broad-brand channels	0.03 – 7 keV (5)	- / 5	150 / 10 ⁵

Plasma diagnostics in progress

Name	Characteristics	Needs	Position	Planned
SSXI	Streaked soft X-ray Imager, Space resol. = 30 or 50 µm Field of view : 5mm or 15mm	Rosseland Opacities Radiative Transfer	SID	2017
SHXI	Streaked hard X-ray imager Space resol. = 150 µm Field of view: 15 mm	1D X-ray image	SID	2017
EOS Pack	VISAR, SBO, Pyrometer, Reflectivity	EOS Shocks propagation	SID + analysis table	2019

Cea

SSXI, Streaked Soft X-ray Imager

Characteristics	Spectral range	Spatial resolution (µm) / Field of view (mm)	Time resolution (ps) / Dynamic (ns)
Magnification = 1 or 3			
1 time-resolved bi-toroidal mirror channel	0.05 – 1.5 keV	30/5 or 50/15	17/2 to 120/25
1 time-integrated bi-toroidal mirror channel	0.05 – 1.5 keV	30 / 5 or 50 / 15	without
Spectral selection by grating			

- Time-resolved 1D image or time / space-resolved spectra in the soft X-ray spectral region.

- Analysis of radiative waves and soft X-ray target emission.

- Association of an optics assembly

and a spectral selection device

(blast shield which large flat mirror,

with grazing incidence, and an X-ray microscope with two channels).

- The spectral selection is provided by two lowpass mirrors combined with a reflective flat field grating.

SXHI, Streaked Hard X-ray Imager

Characteristics	Spectral range	Spatial resolution (µm) / Field of view (mm)	Time resolution (ps) / Dynamic (ns)
Magnification = 1 or 3			
1 time-resolved toroidal mirror channels	0.5 - 10 keV	150/15 or 50/5	17/2 to 120/25
1 time-integrated mirror channel	5 - 10 keV	130/20 or 50/6.5	without

- Time-resolved 1D image in the hard X-ray spectral region.

- X-ray radiography and hard X-ray target emission.

- Two X-ray channels per magnification (grazing angle-of-incidence toroidal mirrors and a filter).

- One image of them produced on the streak camera while the other formed on a time integrated detector (CID).

- A protective holder contains three films to protect optical components.

EOS Pack, Diagnostics set for EOS experiments

Characteristics	Measurement or Spectral range (nm)	Spatial resol. (µm) / Field of view (mm)	Time resol. (ps) / Dynamic (ns)	
2 VISARs (1064 and 532 nm)	Velocity 0.5 - 200 km/s	30 / 1 to 50 / 5	50 / 5 to	
Reflectivity	<i>R</i> > 0.1	5071105075	500 / 100	
2 Shock Break Out (SBO)	490 - 750		50 / 5 to 500 / 100	
Pyrometer	Temp. $> 0.1 \ eV$	30 / 1 to 100 / 10	5075105007100	
2 x 2 D images	490 - 750		75 - 200 / 2 - 20	

- Optical system, positioned close to the target (SID),

- Optical transport system
- Analysis table.

- Laser and optical analyzers will be hardened and protected against EMP inside Faraday cages.

Plasma diagnostics under study

Name	Characteristics	Needs	Position	Planned
UPXI - LPXI	Hard X-ray imagers, upper and lower polar	LEH images in polar irradiation	Specif. Mechanics	2018-2019
FABS	Full aperture backscattering system (Raman-Brillouin spectrometer), Q28H	Energy Balance Interaction	Focusing system	2019
NBI	Near Backscatter Imager (analysis of backscattered light outside Q28H & Q29H)	Energy Balance Interaction	Chamber	2019
ERHXI	Enhanced Resolution Hard X-ray Imager, Spatial resolution: 7 to 20 µm Field of view 0.5 or 1.5 mm	Imploded core image	SID	2019
HRXS	High Resolution X-ray Spectrometer, Spatial resolution: 10 or 100 µm Field of view 0.5 or 5 mm	NLTE spectroscopy Spectral opacities	SID	2019
Neutron Pack	Neutron Counting, flying time for Ti, bang time	First fusion reactions	Chamber	2019

UPXI – LPXI, Upper – Lower Polar X-ray Imagers

Characteristics		Spectral range	Spatial resolution (µm) / Field of view (mm)	Time resolution (ps) / Dynamic (ns)
1 pinhole channel				
Passive detector Magnif. = 2 to 5	CID detector		80 / 12 to 65 / 5	without
	Image Plate	> 3 keV	80 / 50 to 65 / 25	
Optional camera	Streak camera		65 / 2	17/2 to 120/25
Magnif. = 6	Framing camera			110 - 130 / 20

- Time-integrated 2D image, or optionally time-resolved 2D or 1D image, in the hard X-ray spectral region.
- Dedicated to pointing precision of LMJ laser beams
- The image is accomplished with a single 50 μ m diameter pinhole laser drilled into a tantalum foil. The maximum target to pinhole distance is 250 cm (minimum is 150 cm) for a magnification of 2 (5 or 6).

- Available with time-integrated detectors and time-resolved detectors (X-ray streak camera operating with a temporal resolution of 50 ps or ARGOS framing camera).

32

Cea

FABS, Full Aperture Backscattering System

Characteristics	Measurement or Spectral range (nm)	Spatial resol. / Field of view	Time resol. (ps) / Dynamic (ns)
Brillouin spectrometer $\Delta\lambda < 0.05$ nm	346 - 356		50 / 5 to 250 / 25
Raman spectrometer $\Delta\lambda < 5$ nm	375 - 750		
Time integrated calibration spectrom	350 - 700		Without / 5 to 25
	375 - 750	without 250	
3 Brillouin power channels	< 360		250 / 25
2 Raman power channels	350 - 750		230723
1, 2, 3w power channels	1053, 526, 351		500/25

Analysis of backscattered light in the focusing cone of quadruplet 28U (and later 29U).
The backscattered energy is collected with an ellipsoidal Spectralon® scattering panel and sent to the Raman-Brillouin spectrometer.

cea

NBI, Near Backscatter Imager

Characteristics	Spectral range (nm)	Spatial resol. (µm) / Field of view (mm)	Time resol. (ps) / Dynamic (ns)
2 Brillouin power channels	346 - 356		250 (25
2 Raman power channels	375 - 750	without	250/25
Brillouin image	346 - 356	<i>Angle:</i> 2° / 16°	
Raman image	375 - 750	Angle: 2° / 16°	

Analysis of backscattered light outside the focusing cones of quadruplet 28U and 29U.
The backscattered energy is collected by an optical system looking at Spectralon® scattering panels inside the chamber, and send to an optical table where Raman and Brillouin ranges are analyzed.

ERHXI, Enhanced Resolution Hard X-ray Imager

Characteristics	Spectral range	Spatial resolution (µm) / Field of view (mm)	Time resol. (ps) / Dynamic (ns)
Magnification = 12			
8 time-resolved bi-toroidal mirror channels	0.5 - 11 keV	7/0,7	50/20

- Time-resolved 2D image in the hard X-ray spectral region with a high spatial resolution.

- Microscope with large source-to-optic distance and a new gated MCP (new ARGOS detector).
- The microscope includes eight X-ray channels, each consisting of 0.6° grazing angle-of-incidence bitoroidal mirrors and a filter.
- This imager must include a film protective holder to protect optical components from damages

Cea

HRXS, High Resolution X-ray Spectrometer

Characteristics	Spectral range (resol. Ε/ΔΕ)	Spatial resol. (µm) / Field of view (mm)	Time resolution (ps) / Dynamic (ns)
Slit magnification $= 3$			
4 time-resolved crystal channels	1 – 15 keV	70 (1D) / 5	110 - 130 / 20
2 x 3 time-integrated	(~ 500)	70 (ID) / S	without
crystal channels (CID)			Wilhoui

Atomic physics (NLTE spectroscopy and opacity measurements). The central body is associated with the framing camera ARGOS (4 channels).
Can be outfitted with one broad cylindrical concave crystal in order to get four frames at 4 different times in one spectral range or with two crystals in order to get 2 frames on each crystal and two different spectral ranges.

- The front end of the spectrometers includes a snout with collimation slits and a debris shield made of three filter rolls.

Neutron Pack, Activation and nTOF diagnostics

Characteristics	Yield (neutrons)	Spatial resolution / Field of view	Time resolution (ps)
Activation	D = 109 4 = 1015	without	without
Gated PMT + scintillator	D_2 : 10° to 10 ¹³		50
Photodiode	$DT \cdot 10^9$ to 5 10^{18}		(Timing accuracy)
CVD diamonds	D1:10 10 5.10		(Timing accuracy)

- Neutron yield, ion temperature, neutron bang time and ratio of secondary to primary neutron reactions during D_2 and DT implosions.

- Several neutron Time of Flight detectors (nTOF: Gated photomultiplier tubes and scintillators, photodiodes, CVD diamonds) and activation (indium, copper, zirconium, etc.).

-These diagnostics will be installed in several stages.

Plasma diagnostics planned after 2019

Name	Characteristics	Needs
GSXI	Gated Soft X-ray imager, medium field	Radiation transport
SRSXS	Spatially Resolved Soft X-ray spectrometer	Spectral opacities
2 nd miniDMX	2 nd MiniDMX adapted to measures of secondary cavities in nuclear environment	Tr secondary cavity Radiation transport:
FABS Q29H	Full Aperture Backscatter System on Quad29	Energy balance Interaction
SHXI-2	Streaked Hard X-ray Imager 2	Implosion dynamics
Thomson scattering	4 or 5ω probe beam	Characterization of plasma conditions in a cavity
GXI-3	Gated X-ray Imager 3 High resolution, improved temporal resolution	Implosions final phase
SRHXS	Spatially Resolved Hard X-ray Spectrometer Improved temporal resolution	Final implosion conditions analysis Mixing effects
Neutrons Pack 2	Neutron production history Directional measures	Neutron measurements enrichment rho-r / n(t) asymmetry

PETAL+ Project: Plasma Diagnostics for PETAL experiments

Inserters :

Derived from LMJ SID (diagnostics compatibility)The first one is qualified

Electron spectrometer

- Magnetic spectrometer : 5 150 MeV
- Two modules on the chamber wall (0° and 45° /PETAL)
- Delivery : 2016

Hard X-ray spectrometer

Transmission crystals (x2 : Quartz, LiF) : 15 – 100 keV
 Shielding : high energy X-ray and particles (magnets)
 Delivery : 2016

Charged particles diagnostic

Proton spectroscopy & Imaging (proton-radiography)

 100 keV-200 MeV

 Electron spectroscopy

 100 keV - 150 MeV

 Two Thomson parabolas + Image Plate
 Delivery : 2017

J-L. Miquel CEA/DAM/DAN

2ⁿ **P**

2nd European Conference on Plasma Diagnostics

Magnetic Confinement Fusion:

Angelo A. Tuccillo (chair), Ligun Hu, Mikhail Kantor, Michael Walsh

- Beam Plasma & Inertial Fusion: Dimitri Batani, Jean-Luc Miguel, Keisuke Shigemori
- Low Temperature & Industrial Plasmas: Dietmar Block, Walter Gakelman, Svetlana Ratynskaia
- Basic & Astrophysical Plasmas: Marco Feroci, Jan-Willem den Herder, Olivier Limousin

Local Organising Committee

Dimitri Batani (chair), Pauline Aussel, Eric Cormier, Sophie Heurtebise, Katarzyna Jakubowska, Jean Lajzerowicz, Didier Mazon, João Jorge Santos, Emmanuelle Volant

EPS endorsement pending

More information available at https://ecpd2017.sciencesconf.org

Commissariat à l'énergie atomique et aux énergies alternatives Centre DAM Île de France – Bruyères-le-Châtel | 91297 Arpajon Cedex T. +33 - (0)1 69 26 62 16 | F. +33 - (0)1 69 26 70 03 Direction des applications militaires Direction des armes nucléaires

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

The PETAL Project

■Wavelength : **1053 nm** (526 nm option)

■Pulse duration : from 0,5 to 10 ps

■Intensity on target : ~ 10²⁰ W/cm²

■Power contrast : 10⁻⁷ at -7 ps

PETAL is a part of the opening policy of CEA

■ It will be dedicated to the scientific community

PETAL was supported by

LASERS ET PLASMAS

The coupling of PETAL with LMJ is an opportunity to study a wider field of physics

PETAL goals

■Energy : up to 3 kJ *

■Energy contrast : 10⁻³

LMJ (1 beam)

■Energy : up to 7.5 kJ (x 176 = 1,3 MJ)

■Wavelength : 351 nm

Pulse duration : from 0,3 to 25 ns

■Intensity on target : ~ 10¹⁵ W/cm²

* limited at the beginning to 1 kJ due to the limited damage threshold of the transport mirrors

Rochester

First high energy shots in May 2015 : 1,2 PW - 846 J / 700 fs

Experimental results May 29th

Qualification is going on :

- Compression optimization : 570 fs 😊
- New diagnostics installed :
 - Contrast, focal spot, phase, …
 - **_**First contrast measurements : 10⁻⁶ @ -200 ps ⊖ => 2w option to be considered
- Wave front correction (toroidal mirror) => better focal spot
- Spatial uniformity will be upgraded
- The filling of sub-aperture will be improved

Spatio-temporal profiles

The LMJ beamlines : most of the components have been qualified on the LIL prototype

