Self-Radiography of Imploded Shells on OMEGA Based on Additive-Free Multi-Monochromatic Continuum Spectral Analysis

Three images at $h\nu = 2.2$, 2.4, and 2.6 keV yield a shell radiograph.

Inferred optical thickness $h \nu = 2.6$ keV

R. Epstein
University of Rochester
Laboratory for Laser Energetics

61st Annual Meeting of the American Physical Society
Division of Plasma Physics
Fort Lauderdale, FL
21–25 October 2019

$\log_{10} (\text{intensity})$ arbitrary units

Inferred optical thickness

0.1 1.0 10.0
0.00 0.60 1.25

100 μm

100 μm
Summary

The imploded cold shell structure can be radiographed using spatially resolved continuum spectroscopy of the hot core emission

- Core self-emission is the backlighter in self-radiography, unlike externally backlit radiography, where self-emission is the limiting background.
- Continuum self-radiography applies to pure cryo implosions without relying on the spectral K edges or spectral lines of additives*.
- This radiography technique has been demonstrated using multi-monochromatic imaging (MMI) of a warm CH shell implosion on OMEGA.

Collaborators

C. Stoeckl, P. B. Radha, T. J. B. Collins, D. Cao, and R. C. Shah

University of Rochester
Laboratory for Laser Energetics

D. Cliche and R. C. Mancini

University of Nevada, Reno
Core self-emission is the limiting background in externally backlit radiography, but in self-radiography, core self-emission is the backlighter.

- Three intensities \(I_1, I_2, I_3 \) determine the parameters \(A, T, \tau \) at each pixel.
- \(T \) is a chord-averaged, emission-weighted harmonic mean of a highly variable temperature profile.

We rely on the simple spectral form of continuum opacity and emissivity; no additives are needed.
With multi-monochromatic images, the emission and absorption contributions to the total image can be separated

- An inhomogeneous core and shell test the simplicity of the three-parameter continuum model
- 2-D geometry tests the simplifying assumption that absorption follows emission

Shot 81590, DRACO/Spect3D,*

\[\alpha = 2.5, \text{IFAR} = 10 \]

Three images at \(\hbar = 1.6, 1.8, \text{and} 2.0 \text{ keV} \)

Inferred optical thickness

\[0 \quad 1 \quad 2 \]

Intensity \((\times 10^{18} \text{ erg/cm}^2/\text{s/ster/eV}) \)

\(\tau \) polar lineout

\[h\nu = 2.0 \text{ keV} \]

Optical thickness

\[0 \quad 0.5 \quad 1.0 \quad 1.5 \quad 2.0 \]

IFAR: in-flight aspect ratio

* Prism Computational Sciences, Inc., Madison, WI.
Simulated self-radiographs of a less-stable implosion indicate that features attributable to imprint will be visible

Shot 82717 is a less-stable ($\alpha = 1.9$, IFAR = 14) version of shot 81590 ($\alpha = 2.5$, IFAR = 10)

log$_{10}$ (intensity) arbitrary units

<table>
<thead>
<tr>
<th>$h\nu$ (keV)</th>
<th>2.2</th>
<th>2.4</th>
<th>2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inferred optical thickness</td>
<td>0.00</td>
<td>0.60</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Inferred optical thickness

Prism Computational Sciences, Inc., Madison, WI.
The timing of three MCP strips on the MMI* image plane provided three simultaneous monochromatic images of a warm CH shell implosion on OMEGA

Pinhole image data from strip #2 of XRFC3 of the multi-monochromatic X-ray imager (MMI)

1.95 ns 3.5 keV
2.06 ns 4.6 keV
2.15 ns 5.5 keV

Time-spectral location of the three simultaneous images

Averaged image $h\nu = 4.5$ to 4.7 keV

Shot 94374

*H. Azechi et al., Appl. Phys. Lett. 37, 998 (1980); D. T. Cliche and R. C. Mancini, Appl. Opt. 58, 4753 (2019); UO7:00006, this meeting
MCP: microchannel plate
XRFC: x-ray framing camera
Shot 94374 has been radiographed by space-resolved continuum spectroscopy using three simultaneous MMI images.

- Inferred central optical thickness is roughly consistent with LILAC/Spect3D simulation values.
- Diagnostic development, implosion symmetry, etc., have yet to be fully explored.
- Radiographic symmetry corroborates the symmetry of other images of this implosion earlier in time.

MMI averaged images

- $h\nu = 3.6\ \text{keV}$
- $h\nu = 4.6\ \text{keV}$
- $h\nu = 5.4\ \text{keV}$

Projected optical thickness

- Intensity (arbitrary units)

Lineout

- Average source temperature (keV)

Optical thickness

- Lineout, measured
- Simulated, -100 ps
- Simulated, instantaneous
Imploded cold shell structure can be radiographed using spatially resolved continuum spectroscopy of hot core emission

- Core self-emission is the backlighter in self-radiography, unlike externally backlit radiography, where self-emission is the limiting background.
- Continuum self-radiography applies to pure cryo implosions without relying on the spectral K-edges or spectral lines of additives.*
- This radiography technique has been demonstrated using multi-monochromatic imaging (MMI) of a warm CH shell implosion on OMEGA.