Direct Measurements of Hot-Electron Preheat in the Dense Fuel of Inertial Confinement Fusion Implosions

A. R. Christopherson
University of Rochester
Laboratory for Laser Energetics

Cryo 77064
CD
DT
DT gas
378.3 μm
8.0 μm
50.2 μm

All CD 77062
CD
DT gas
420 μm
17.6 μm

HXRD (pC/ns)
0
200
400
600
1.6
1.8
2.0
2.2
2.4
2.6
Time (ns)

61st Meeting of the American Physical Society
Division of Plasma Physics
Fort Lauderdale, FL
21–25 October 2019
Preheat in cryogenic implosions is directly inferred by comparison of hard x rays between all-plastic and DT layered implosions

- Differences in hard x-ray signals between mass-equivalent all-CH and cryo implosions can be used to infer hot-electron energy deposition into the payload.
- Hot-electron deposition into the payload increases proportionally with the payload mass.
- Modeling of these experiments indicated an ~10-20% degradation in areal density as a result of hot-electron preheat for typical $\alpha = 4$ designs.
- A similar experimental campaign is underway on the NIF to assess the viability of direct drive on the NIF.
Collaborators

Laboratory for Laser Energetics
University of Rochester

R. Simpson and M. Gatu Johnson
Massachusetts Institute of Technology
Outline

• Hot-electron preheat and the preheat formula
• Hot-electron transport experiments and modeling on OMEGA
• Hot-electron transport experiments on the NIF
Outline

- Hot-electron preheat and the preheat formula
 - Hot-electron transport experiments and modeling on OMEGA
 - Hot-electron transport experiments on the NIF
Hot-electrons from laser–plasma interactions can preheat the DT fuel, thereby raising the adiabat and degrading the areal density

Lawson parameter $\chi = \left(\rho R_g / \text{cm}^2 \right)^{0.61} \left(\frac{0.12 \text{ Yield}_{16}}{M_{\text{stag,mg}}} \right)^{0.34}$

$\chi \sim \frac{E_k^{0.35} P_{\text{max}}^{0.14} v_{\text{imp}}^2}{\alpha^{0.84}}$

- α = shell adiabat
- E_k = shell kinetic energy
- v_{imp} = shell implosion velocity
- P_{max} = ablation pressure
- M_{stag} = stagnated DT mass

Previous studies* of hot-electron transport on OMEGA suggest that hot electrons intersect the target at a large divergence angle or are transported isotropically. Although the divergence of electrons was measured, the exact amount coupled into the dense fuel of cryo implosions is still unknown.

Although the divergence of electrons was measured, the exact amount coupled into the dense fuel of cryo implosions is still unknown.

TCS: type quartz crystal spectrometer
XRS: x-ray spectrometer
HXR: hard x ray
MC: moving cryostat

A single hard x-ray measurement in a cryo implosion cannot discriminate between hard x rays emitted from electrons slowing down in DT versus CD.
Hot-electron energy deposited in DT is inferred by comparing hard x-ray signals of all-CD and DT-layered targets

- The key parameter is “radiative power” \(\frac{E_{\text{rad}}}{E_{\text{dep}}} \), which represents the radiated energy by the hot electrons per unit of energy lost via Coulomb collisions.

\[
\frac{E_{\text{rad}}}{E_{\text{dep}}} = 5.9 \times 10^{-4}
\]

\[
\frac{E_{\text{rad}}}{E_{\text{dep}}} = 1.1 \times 10^{-4}
\]
The radiative power $E_{\text{rad}}/E_{\text{dep}}$ depends on background plasma atomic number Z and hot-electron temperature

- $E_{\text{rad}}/E_{\text{dep}}$ is proportional to $\langle Z^2 \rangle/\langle Z \rangle$
- $E_{\text{rad}}/E_{\text{dep}}$ depends on the hot-electron temperature that is measured by the multichannel hard x-ray detector (40 keV and up, assuming a Maxwellian distribution of hot electrons)

$$
\frac{E_{\text{rad}}}{E_{\text{dep}}} = \frac{\int_0^\infty f(E_0) \int_0^{E_0} \frac{dE_{\text{rad}}}{dE_{\text{collision}}} dE\, dE_0}{\int_0^\infty f(E_0) E_0 dE_0}
$$
The DT preheat energy is directly proportional to the difference in hard x-ray signals between the cryo and all-CD implosion.

\[E_{\text{hot,DT}} = \frac{\text{HXR}_{\text{all CD}} - \text{HXR}_{\text{cryo}}}{\left(\frac{E_{\text{rad}}}{E_{\text{dep}}}\right)_{\text{CD}} - \left(\frac{E_{\text{rad}}}{E_{\text{dep}}}\right)_{\text{DT}}} \]

- Key assumption: the hot-electron source is the same for both the cryo and the all-CD experiments.
One-dimensional LILAC simulations indicate that mass-equivalent all-CD and cryo targets have the same coronal plasma conditions, and therefore the same hot-electron source.

\[
\eta = \frac{I_{14} \text{W/cm}^2 \cdot L_{\mu m}}{233 \cdot T_{\text{keV}}}
\]

- The TPD threshold* \(\eta \)

* A. Simon et al., Phys. Fluids 26, 3107 (1983);
The 1-D code *LILAC* uses a straight-line model where electrons lose energy according to a slowing-down formula*.

- The radiation emitted by hot electrons is calculated from NIST tables.
- The hot-electron source is Maxwellian with the measured temperature.
- Electrons are born at the quarter-critical surface and are initialized with a user-specified divergence angle.

LILAC simulations show that the preheat formula correctly predicts the energy deposited into the payload regardless of the payload material, divergence angle, and electron transport model.

\[
\frac{\text{HXR}_{\text{all CD}} - \text{HXR}_{\text{multilayered target}}}{\left(\frac{E_{\text{rad}}}{E_{\text{dep}}} \right)_{\text{CD}} - \left(\frac{E_{\text{rad}}}{E_{\text{dep}}} \right)_{\text{payload}}}
\]

DT layer replaced with copper-doped CH

Exact \(E_{\text{hot, payload}} \) from LILAC (J)
The ratio of DT preheat energy to hard x-ray difference is a function of the hot-electron temperature.

Hot electron energy deposited into DT (J)

$$\text{HXRD}_{\text{All CH, pC}} - \text{HXRD}_{\text{cryo, pC}}$$

![Diagram showing the ratio of DT preheat energy to hard x-ray difference as a function of hot-electron temperature. The typical range in cryo experiments is highlighted.](image-url)
Although the preheat formula predicts electron energy into the total DT, the ρR degradation depends on electron energy into the unablated DT

- The difference in hard x-ray signal predicts electron energy into the total DT
- A fraction of DT mass is ablated during an OMEGA implosion
Although the preheat formula predicts hot-electron energy into the total DT, the ρR degradation depends on hot-electron energy into the unablated DT.

Outline

- Hot-electron preheat and the preheat formula
- Hot-electron transport experiments and modeling on OMEGA
- Hot-electron transport experiments on the NIF
An experimental platform that utilized Cu-doped payloads of varying thicknesses was developed to measure where the hot electrons deposit their energy.
ω/2 images indicate that the TPD activity in the corona is identical between the all-CH and CH (Cu) payload implosions.

These data support the assumption that the hot-electron source between the all-CH and multilayered implosions is the same.
The energy deposition into the Cu-doped payload increases proportionately with the payload mass.
A simple model based on uniform deposition per unit mass was developed to describe the multilayered experiments.

\[K \equiv \frac{1}{E_{\text{hot,tot}}} \frac{dE_{\text{dep}}}{dM} = \text{const} \]

\[E_{\text{hot,CH(Cu)}} = K E_{\text{tot}} M_{\text{payload}} \]

\[E_{\text{hot,tot}} = \frac{\text{HXRD}_{\text{All CH}}}{E_{\text{rad}}/E_{\text{dep}}}_{\text{CH}} \]

\[HXRD_{\text{CH(Cu)}} = E_{\text{hot,CH(Cu)}} \left[\frac{E_{\text{rad}}}{E_{\text{dep}}}_{\text{CH(Cu)}} \right] + \left[E_{\text{hot,tot}} - E_{\text{hot,CH(Cu)}} \right] \left[\frac{E_{\text{rad}}}{E_{\text{dep}}}_{\text{CH}} \right] \]

- \(M_{\text{payload}} = \) payload mass
- \(E_{\text{hot,CH(Cu)}} = \) energy deposited into CH (Cu)
- \(E_{\text{hot,tot}} = \) total hot-electron energy
- \(\frac{dE_{\text{dep}}}{dM} = \) electron energy deposited per unit mass
The good agreement between the model and data confirms the hypothesis that hot-electron deposition is approximately uniform with respect to mass.
The same model applied to DT layered targets of typical $\alpha \approx 4$ implosions* leads to areal-density degradation of about 15% to 20% with respect to the calculated 1-D

$$E_{\text{hot,DT}} = \frac{\text{HXR}_{\text{all CD}} - \text{HXR}_{\text{cryo}}}{(\frac{E_{\text{rad}}}{E_{\text{dep}}})_{\text{CD}} - (\frac{E_{\text{rad}}}{E_{\text{dep}}})_{\text{DT}}}$$

$$E_{\text{hot, unabl.}} = E_{\text{hot,DT}} \left(\frac{M_{\text{unabl.}}}{M_{\text{DT}}} \right)$$

<table>
<thead>
<tr>
<th>Shot number</th>
<th>$E_{\text{hot,DT}}$</th>
<th>$E_{\text{hot, unabl.}}$</th>
<th>$\rho R_{\text{experiment}}$</th>
<th>$\rho R_{\text{LILAC, no hots}}$</th>
<th>$\rho R_{\text{LILAC, hots}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>77064</td>
<td>14 ± 3 J</td>
<td>5 ± 1 J</td>
<td>195 ± 17 mg/cm²</td>
<td>230 mg/cm²</td>
<td>198 ± 5 mg/cm²</td>
</tr>
<tr>
<td>85784</td>
<td>22 ± 4 J</td>
<td>8 ± 2 J</td>
<td>160 ± 14 mg/cm²</td>
<td>210 mg/cm²</td>
<td>170 ± 9 mg/cm²</td>
</tr>
</tbody>
</table>

Outline

- Hot-electron preheat and the preheat formula
- Hot-electron transport experiments and modeling on OMEGA
- Hot-electron transport experiments on the NIF
As implosions scale from OMEGA to the NIF, the scale length is also expected to increase, resulting in more expected LPI for the same coronal conditions.

<table>
<thead>
<tr>
<th></th>
<th>NIF</th>
<th>OMEGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale length at quarter-critical $L_{\mu m}$</td>
<td>$\sim 400 \mu m$</td>
<td>$\sim 150 \mu m$</td>
</tr>
<tr>
<td>Electron temperature at quarter-critical $T_{e,\text{keV}}$</td>
<td>$\sim 3.2 \text{ keV}$</td>
<td>$\sim 2.5 \text{ keV}$</td>
</tr>
<tr>
<td>Intensity at quarter-critical I_{14}</td>
<td>$\sim 4 \times 10^{14}$ W/cm²</td>
<td>$\sim 3.5 \times 10^{14}$ W/cm²</td>
</tr>
<tr>
<td>η_{TPD}</td>
<td>$\sim 2 \text{ to } 5$</td>
<td>~ 1</td>
</tr>
<tr>
<td>η_{SRS}</td>
<td>$\sim 5 \text{ to } 10$</td>
<td>~ 1</td>
</tr>
</tbody>
</table>

$$\eta_{\text{TPD}} = \frac{I_{14}L_{\mu m}/233}{T_{e,\text{keV}}} \quad \eta_{\text{SRS}} = \frac{I_{14}L_{\mu m}^{4/3}}{2377}$$

LPI: laser–plasma interaction
SRS: stimulated Raman scattering
The OMEGA preheat platform is being developed on the NIF to measure the coupling of hot electrons into the target.

Different buried depths of the Ge-doped layer are examined to diagnose the hot-electron deposition profile in the imploding shell.

* A. A. Solodov et al., NO5.00011, this conference.
Experiments on the NIF indicate that approximately one quarter of the total hot-electron energy is coupled into the unablated shell*.

More detailed hydro-scaled experiments are still needed to quantify the scaling of preheat with laser energy.

* A. A. Solodov et al., N05.00011, this conference.
Preheat in cryogenic implosions is directly inferred by comparison of hard x rays between all-plastic and DT layered implosions

- Differences in hard x-ray signals between mass-equivalent all-CH and cryo implosions can be used to infer hot-electron energy deposition into the payload
- Hot-electron deposition into the payload increases proportionally with the payload mass
- Modeling of these experiments indicated an ~10-20% degradation in areal density as a result of hot-electron preheat for typical $\alpha = 4$ designs
- A similar experimental campaign is underway on the NIF to assess the viability of direct drive on the NIF
On OMEGA, TPD is the dominant hot-electron source, while NIF experiments show significant amounts of SRS.

\[\text{Absolute SRS at } \omega/2 \]
\[(\lambda = 700 \mu m = 2\lambda_0) \]

SRS emission \((700 \mu m > \lambda > \lambda_0)\)
Hot-electrons from laser–plasma interactions can preheat the DT fuel, thereby raising the adiabat and degrading the areal density

- The TPD instability is thought to be the prevalent source of hot electrons in direct-drive ICF

- TPD occurs in the corona where the density is near quarter-critical density ($0.2n_c < n_e < 0.25n_c$)
Electron transport is described with a two-parameter *ad hoc* model to fit the data where the electron divergence angle and coronal stopping power are varied.
The best fit to the experimental data occurs at a full divergence angle of 40°.
The hot-electron model almost captures the measured hard x-ray signal in the cryo experiment and predicts that 9 ± 5 out of 44 ± 10 J of preheat energy is coupled into the unablated DT.

<table>
<thead>
<tr>
<th>$\rho R_{\text{experiment}}$</th>
<th>$\rho R_{\text{LILAC, no hots}}$</th>
<th>$\rho R_{\text{LILAC, hots}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 ± 14 mg/cm2</td>
<td>206 mg/cm2</td>
<td>160 ± 16 mg/cm2</td>
</tr>
</tbody>
</table>