An Investigation of Monoenergetic Electron Beams for High-Energy-Density and Inertial Confinement Fusion Diagnostics

G. BRUHAUG, H. G. RINDERKNECHT, M. S. WEI, G. W. COLLINS, J. R. RYGG, and J. L. SHAW

University of Rochester, Laboratory for Laser Energetics

Summary

- Modern electron-beam-generation techniques provide a broad range of available energies and beam qualities.
- These beams have the potential for more-accurate radiography, monoenergetic and tunable x-ray generation, and possibly direct electron diffraction measurements.

Electron-Beam Sources

RF gun

Modern RF accelerators have been used for the successful electron acceleration of dynamic targets [2]:
- low-energy, low-energy spread beams are a great asset for electron diffraction
- the mean-free path (MFP) of elastic scatter provides strong limits on the targets and useful beam energies
- typical electron acceleration goes through no more than 4 MFP

Accelerators

- Electron diffraction utilizes the wave nature of electrons to investigate crystal structure
- Diffraction is induced when the Bragg condition is met [5]
- A 20 MeV electron, with a wavelength of 0.06 nm, will satisfy this condition

Comparison of MFP of electrons using Born approximation in various materials

- Reflecting electron diffraction provides one potential solution to the target thickness limit [2]:
- co-timing and target alignment will prove to be challenging
- Thin, uniform, self-targeted targets coupled to a spectrometer provide another solution
- co-timing and detector construction will provide challenges to this technique

Inverse-Compton Scattering X-Ray Sources

- Electron beams can interact with lasers to form monoenergetic x-ray beams via inverse Compton scattering [4]:
- The x-ray beam inherits the beam qualities of the parent beams
- If high-intensity lasers are used, a nonlinear scaling with x-ray yield and x-ray energy begins to occur following these equations [6]

X-ray Source using S-397 Electron Beam

- A 100-pc, g-pummed system coupled to MTF-OPAL would nearly be equal in brightness to standard foil x-ray backlighters, but would be more tunable
- The same system coupled to OMEGA EP would exceed the standard x-ray backlighter brightness by a factor of 100

Electron Radiography

- MeV-scale electrons can essentially penetrate ICF and HED targets [8]
- and act as a radiography source [2]
- LWFA-generated electron beams can also be made more resistive to magnetic fields than protons. The resistance of a given charged particle to deflection by a magnetic field is given by [2]:

Electron Radiography

- The x-ray beam could also be increased in bandwidth by adjusting the electron beam parameters

References

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA000395, the University of Rochester, and the New York State Energy Research and Development Authority.
• RF accelerators can be purchased from commercial vendors in turn-key packages
 – the large size and costs associated with RF accelerators limit laboratories that can reasonably host one
 – applications needing incredibly precise beams benefit greatly from the small energy spread and emittance
 – the broad tunability of RF accelerators allows for a wide variety of beams to be generated from a single machine \[2\]

RF: radio-frequency
Laser wakefield accelerator (LWFA) technology can often be implemented on existing lasers at ICF/HED research facilities:

- the high emittances and energy spreads limit the use of LWFA beams
- applications that need hundreds of MeV or greater benefit from the small size afforded by the large gradients
- the technology is rapidly maturing, with beam quality constantly increasing [3,4]

<table>
<thead>
<tr>
<th>Accelerator type</th>
<th>Acceleration mechanism</th>
<th>Accelerating gradient</th>
<th>Beam energy spread</th>
<th>Beam emittance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF accelerator</td>
<td>Conductive resonant cavities powered by an external RF source</td>
<td>~20 MV/m</td>
<td><1%</td>
<td>Microradians</td>
</tr>
<tr>
<td>LWFA</td>
<td>Laser–plasma interactions</td>
<td>>1 GV/m</td>
<td><10%</td>
<td>Milliradians</td>
</tr>
</tbody>
</table>

ICF: inertial confinement fusion
HED: high energy density
Electron Diffraction

- Electron diffraction utilizes the wave nature of electrons to investigate crystal structure
- Diffraction is induced when the Bragg condition is met [5]

\[2d \sin \theta = n \lambda \]
• Modern RF electron accelerators have been used for the successful electron diffraction of dynamic targets [1,5]
 – low-emittance, low-energy spread beams are a must for electron diffraction

• The mean-free path (MFP) of elastic scatter provides strong limits on the targets and useful beam energies
 – typical electron diffraction goes through no more than 4 MFP

Comparison of MFP of electrons using born approximation in various materials
• Reflecting electron diffraction provides one potential solution to the target thickness limits [5]
 – co-timing and target alignment will prove to be challenging

• Thick, uniform, self-tamped targets coupled to a spectrometer provide another solution
 – co-timing and detector construction will provide challenges to this technique
Inverse-Compton Scattering X-Ray Sources

- Electron beams can interact with lasers to form monoenergetic x-ray beams via inverse Compton scattering [6].
- The x-ray beam inherits the beam qualities of the parent beams.
- If high-intensity lasers are used, a nonlinear scaling with x-ray yield and x-ray energy begins to occur following these equations [4]

\[
E_{x\text{-ray photon}} = \frac{4\gamma_e^2 E_{\text{laser-photon}} N_{\gamma}}{1 + (\gamma_e \theta)^2 + \frac{a_0^2}{2N_{\gamma X}}} \\
N_{x\text{rays}} = \frac{\sigma_c N_{\text{lesser}} N_e}{\pi w_0^2}
\]

- An inverse Compton source can be built using the same accelerator that would be used for electron diffraction experiments.
- This x-ray source would be bright, tunable, and monoenergetic.
- The x-ray beam could also be increased in bandwidth by adjusting the electron beam parameters.

X-ray Source using 5-MeV Electron Beam

<table>
<thead>
<tr>
<th>Laser</th>
<th>X-ray (KeV)</th>
<th>Bandwidth (eV)</th>
<th>X-ray yield per pC of electron</th>
<th>(a_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTW OPAL</td>
<td>4.24</td>
<td>9.26</td>
<td>(6 \times 10^6)</td>
<td>3.47</td>
</tr>
<tr>
<td>EP 1000 J</td>
<td>1.041</td>
<td>0.22</td>
<td>(1 \times 10^9)</td>
<td>1.65</td>
</tr>
<tr>
<td>EP 350 J</td>
<td>4.502</td>
<td>0.22</td>
<td>(4 \times 10^8)</td>
<td>4.52</td>
</tr>
<tr>
<td>EP OPAL</td>
<td>61.823</td>
<td>1479</td>
<td>(1 \times 10^9)</td>
<td>43.95</td>
</tr>
</tbody>
</table>

- A 100-pC system coupled to MTW-OPAL would nearly be equal in brightness to standard foil x-ray backlighters, but would be more tunable.
- The same system coupled to OMEGA EP would exceed the standard x-ray backlighter brightness by a factor of 100.

\(a_0\): unitless laser strength parameter

MTW: multi-terawatt

OPAL: optical parametric amplifier line
Electron Radiography

- MeV-scale electrons can easily penetrate ICF and HED targets [7] and act as a radiography source [8]

- LWFA-generated electron beams can also be made more resistant to magnetic fields than protons. The resistance of a given charged particle to deflection by a magnetic field is given by [2,8]

\[
B \times r = \frac{p}{q},
\]

where \(B \) is the magnetic field, \(r \) is the deflection length, \(p \) is the particle momentum, and \(q \) is the particle charge

- \(^{3}\text{He} \) proton radiography has a magnetic rigidity of \(\sim 0.6 \text{ T-m} \) [9]

- A 300-MeV electron beam has twice the magnetic rigidity of \(^{3}\text{He} \) protons and is well within the range of a typical LWFA source

- The electron beam also has range in materials that is two orders of magnitude higher than \(^{3}\text{He} \) protons, allowing for denser targets or targets shielded by holhraums

![Diagram of electron radiography setup](image)

300-MeV image-plate electron radiograph of a NIF pellet mid-compression

![Graph showing PSL vs. x (mm)](image)
Summary

- Modern electron-beam–generation techniques provide a broad range of available energies and beam qualities.
- These beams have the potential for more-accurate radiography, monoenergetic and tunable x-ray generation, and possibly direct electron diffraction measurements.
References

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003856, the University of Rochester, and the New York State Energy Research and Development Authority.