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We report the experimental observation of the breakdown of 
Fermi degeneracy in fluid metallic deuterium at T = 0.4 TF

•	 We have studied the optical conduction of shocked deuterium 
as a function of temperature up to its Fermi temperature, TF

•	 At 0.4 TF, we observed the quantum degenerate to classical 
crossover in dense fluid deuterium, challenging the standard 
convention in dense plasma literature, which assumes T = TF 
demacrates such boundary

•	 Our data provide an invaluable benchmark to dense plasma 
transport models over an order of magnitude in T
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In 1926, Fermi and Dirac independently introduced the 
quantum statistics describing indistinguishable systems 
with antisymmetrical eigenfunctions (fermions)
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	*	P. A. M. Dirac, Proc. Roy. Soc. A. 112, 661 (1926).
**	E. Fermi, Rend. Lincei 3, 145 (1926).

P. M. Dirac*

E. Fermi**

“The solution with symmetrical eigenfunctions must be the correct one when applied to light quanta,
since it is known that the Einstein-Bose statistical mechanics lead to Planck’s law of black-body radiation.
The solution with antisymmetrical eigenfunctions, though, is probably the correct one for gas molecules,
since it is known to be the correct one for electrons in the atom.”
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The Fermi–Dirac statistics are a direct manifestation 
of the Pauli exclusion principle 

•	 This gives rise to the structure of the periodic table 

•	 The electron conduction in metals and semiconductor 

•	 The quantum hall effect 

•	 Degeneracy pressure in compact astrophysical objects, e.g., neutron stars and white dwarfs 
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These Fermi–Dirac statistics, at high enough T, 
assume the classical Maxwellian behavior

•	 The key energy scale that dictates the relevant thermodynamic 
statistics (Maxwellian or Fermi–Dirac) is the Fermi energy  
 
	 In the Fermi–Dirac limit (T % TF) 
	 The average number of fermions in a single-particle state i 
 
 
 
 

is the energy of this single state, n is the chemical potentional ~EF, 
	 and kB is the Boltzmann constant 
 
 
	 In the classical Boltzmann limit (T & TF)
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The conduction carrier’s velocity distribution differs 
substantially between classical and quantum statistics 
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Degeneracy and Fermi energy demarcate regimes 
of classical and quantum statistics of Fermi matter
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T TFH = m nT 2 3 /
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In fluids and plasmas, another key energy scale is the 
strength of ion–ion interaction (interionic coupling)

•	 This is the ratio of the potential energy to the kinetic energy, 
which describes the correlation of the fluid/plasma 

•	  Cii = e2/akBTs, 
 
where a = (3/4rn)1/3 is the ion sphere radius, e is the 
electron charge, and kB is the Boltzmann constant 

•	 Low, dense, high-temperature plasmas are weakly coupled 
Cii % 1 (gas-like)

•	 Dense, low-temperature plasmas are strongly coupled 
Cii & 1 (liquid-like) 

•	 At sufficiently high Cii, plasma will crystalize into 
a solid-like state (Wigner crystallization) Cii ~ 17

9
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Shocked (deuterium) is a unique system to investigate 
these different states of dense matter
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•	 The fluid transforms from a strongly coupled, highly degenerate 
metal to weakly coupled, classical plasma 
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Shocked (deuterium) is a unique system to investigate 
these different states of dense matter 

•	 Above the insulator metal transition, there are no core electrons to 
screen the electron–ion interaction or introduce bound (ionization) 
states; accordingly, the interactions are purely Coulombic 

–– in its simplest picture: electrons are scattering off ions 

•	 Above the maximum compression t/t0 ~ 4.2 to 4.5, the density 
plateaus as a function of increasing shock velocities 

–– all of the pressure increase is thermal pressure

11
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Line-imaging velocimetry and streaked optical pyrometry (SOP) were 
used to measure the shock velocities, reflectance, and temperature
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*	VISAR: velocity interferometer system for any reflector

•	 Experimental observables
–– shock velocities, reflectance, and temperature

•	 The range of velocities studied is 20 to 65 km/s 

CD shells filled with liquid D2 t0 = 0.172 g/cm3

Au
cone

Cryostat

VISAR*

SOP

351-nm
OMEGA beam

CD
shell

Liquid
D2



E27905

In a highly degenerate regime (0.07 < T/TF ~ 0.35), reflectance plateaus are 
~0.4 to 0.43, consistent with the resistivity saturation in Fermi-liquid behavior
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This reflectance saturation value corresponds to the 
minimum metallic conductivity criterion derived by 
Mott–Ioffe–Regal for disordered or fluid metals

Mean free path cannot be less than interatomic spacing

Assuming full ionization, and at t ~ 0.741 (4.5 compression) RMIR = 0.38
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A. F. Ioffe and A. R. Regal, Prog. Semicond. 4, 237 (1960); 
N. F. Mott, Phil. Mag. 6, 287 (1961).

Increasing temperatures " diminishing mean free path " decreasing x
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In the classical regime, reflectance starts 
rising continuously up to 0.7 at 65 km/s
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The rise in the reflectance occurs at T > 0.4 TF and Cii ~ 2.5
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M. Zaghoo et al., “Breakdown of Fermi Degeneracy in the Simplest 
Liquid Metal,” to be submitted to Physical Review Letters.

DFT: density functional theory
QMD: quantum molecular dynamics
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The reflectance increase above 0.4 TF can occur because of either increased 
density, ionization at the same density, or increased relaxation times
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An increase in density or ionization fraction cannot account for the observed R
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†L. Caillabet, S. Mazevet, and P. Loubeyre, Phys. Rev. B 83, 094101 (2011). 
 N. M. Tubman et al., Phys. Rev. Lett. 115, 045301 (2015).
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Experimentally inferred relaxation times above T ~ a5 eV 
reveal x ~ aT 1.55, which is consistent with the characteristic 
Landau–Spitzer dependence x ~ T 1.50

19

The metallic plasma has transformed 
from a system where relaxation time 
is described by Fermi degeneracy to 
one where it is better described by 
Maxwellian statistics.

M. Zaghoo et al., “Breakdown of Fermi Degeneracy in the Simplest 
Liquid Metal,” to be submitted to Physical Review Letters.
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The data provide an invaluable benchmark to dense plasma 
transport models over an order of magnitude in T

•	 Both Lee–More and Purgatorio models underestimate the conductivity of the deuterium 
plasma across the whole range, but Purgatorio does better in the degenerate regime
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Y. T. Lee and R. M. More, Phys. Fluids 27, 1273 (1984);
P. A. Sterne et al., High Energy Density Phys. 3, 278 (2007).
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Our experimental and computational data challenge the standard 
convention in dense plasma literature, which assumes that 
T/TF delineates quantum and classical regimes 

•	 Ab initio DFT-QMD results show that the onset of the 
crossover remains unchanged at increasing densities 
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DFT calculations by S. X. Hu
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Our results extend studies of degeneracy to new 
fermionic species (electrons) in a dense liquid system

22

M. Zaghoo et al., “Breakdown of Fermi Degeneracy in the Simplest 
Liquid Metal,” to be submitted to Physical Review Letters;
B. DeMarco and D. S. Jin, Science 285, 1703 (1999);
B. DeMarco, S. B. Papp, and D. S. Jin, Phys. Rev. Lett. 86, 5409 (2001).
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The breakdown of degeneracy will have key consequences on 
the thermodynamic and transport properties of the plasma

•	 Cv is the heat capacity,							       n is the chemical potentional

•	 k is the electronic thermal conductivity,			  h is the shear viscosity
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Our conventional interpretation of the adiabat (P/PF) might require a revision
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We report the experimental observation of the breakdown of 
Fermi degeneracy in fluid metallic deuterium at T = 0.4 TF

•	 We have studied the optical conduction of shocked deuterium 
as a function of temperature up to its Fermi temperature, TF

•	 At 0.4 TF, we observed the quantum degenerate to classical 
crossover in dense fluid deuterium, challenging the standard 
convention in dense plasma literature, which assumes T = TF 
demacrates such boundary

•	 Our data provide an invaluable benchmark to dense plasma 
transport models over an order of magnitude in T
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Summary/Conclusions
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Our results are consistent path-integral Monte Carlo (PIMC) calculations, which 
confirm the crossover from the degenerate to the classical limit at 0.3 to 0.4 TF
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