Impact of Three-Dimensional Hot-Spot Flow Asymmetry on Ion-Temperature Measurements in Inertial Confinement Fusion Experiments

K. M. Woo University of Rochester Laboratory for Laser Energetics

60th Annual Meeting of the American Physical Society Division of Plasma Physics Portland, OR 5–9 November 2018

Summary

An analytical model has been developed to study three-dimensional flow effects on ion-temperature measurements

- The velocity variance in Brysk ion temperatures is shown to be uniquely determined by a complete set of six hot-spot flow parameters in terms of variance and covariance of the hot-spot flow velocity distribution
- An approximated solution to the minimum inferred ion temperature is derived and is shown to reproduce the thermal ion temperature for low-mode $\ell = 1$
- The isotropic velocity variance for low-mode $\ell = 2$ leads to minimum inferred ion temperatures well above the thermal ion temperature

2

Collaborators

R. Betti, O. M. Mannion, D. Patel, V. N. Goncharov, K. S. Anderson, P. B. Radha, J. P. Knauer, V. Gopalaswamy, A. R. Christopherson, E. M. Campbell, and H. Aluie

> University of Rochester Laboratory for Laser Energetics

D. Shvarts

Ben Gurion University of the Negev

J. Sanz

Universidad Politecnica de Madrid

A. Bose

Massachusetts Institute of Technology

The ensembled average of fluid elements with a Gaussian distribution of neutron energy is applied to infer ion temperatures along different lines of sight (LOS)

Numerical method

• Ensemble averaging of fluid elements with Gaussian distribution of neutron energy

$$f_{\text{LOS}}(\boldsymbol{E}_{\text{n}}) = \sum_{\text{cell}} \frac{\boldsymbol{Y}_{\text{cell}}(\boldsymbol{t})}{\boldsymbol{Y}_{\text{total}}(\boldsymbol{t})} \exp\left[-\frac{(\boldsymbol{E}_{\text{n}} - \boldsymbol{\mu}_{\text{LOS}})^2}{2\sigma^2}\right]$$

- Mean energy • $\mu_{\text{LOS}} = E_0 + \hat{v} \cdot \hat{d} \sqrt{2m_n E_0}$ **Doppler shift term**
- Thermal velocity

$$\sigma^2 = 2m_n E_0 T_i^{\text{thermal}} / (m_n + m_{\alpha})$$

TC14623

Mode 1 exhibits a large ion-temperature ratio while mode 2 exhibits a large minimum inferred ion temperature well above the thermal ion temperature

For high modes, the fast moving cold bubbles do not significantly contribute to ion-temperature measurements

Ion temperatures along different lines of sights are affected by the velocity variance of the hot-spot fluid velocity distribution

Kochester

The velocity variance is decomposed into a complete set of six hot-spot flow parameters to characterize the hot-spot flow asymmetry

Analytic model

Decomposition of the velocity variance into variance and covariance

$$\vec{v} = v_i \hat{x}_i \text{ and } \hat{d} = g_i \hat{x}_i$$

$$var[\vec{v} \cdot \hat{d}] = \langle (\vec{v} \cdot \hat{d})^2 \rangle - \langle \vec{v} \cdot \hat{d} \rangle^2 = \langle (v_i g_i)(v_j g_j) \rangle - \langle v_i g_i \rangle \langle v_j g_j \rangle$$

$$\sigma_{ij} \equiv \langle v_i v_j \rangle - \langle v_i \rangle \langle v_j \rangle \text{ and } \hat{T} \equiv T / (m_n + m_\alpha)$$

$$\hat{T}_i^{inferred} = \hat{T}_i^{ihermal} + \sigma_{iso}^2 + g_i g_j \Delta \sigma_{ij} \delta_{ij} + g_i g_j \sigma_{ij} (1 - \delta_{ij})$$

$$3 \text{ var } (i = j) \qquad 3 \text{ cov } (i \neq j)$$

var = $\sigma_{ii} = \sigma_{iso}^2 + \Delta \sigma_{ii}$, where $\sigma_{iso}^2 = \min[\sigma_{11}, \sigma_{22}, \sigma_{33}]$

 $0 \xrightarrow{\phi} 2\pi$ South pole

0

rad)

TC14625

Six *T_i* measurements form a linear system with an invertible LOS matrix

Analytic model

 $\vec{T}_{\text{new}} = (\hat{I} - \hat{M}_{\text{new}} \cdot \hat{M}_{\text{LOS}}^{-1}) \cdot \vec{T}_{\text{th}} + \hat{M}_{\text{new}} \cdot \hat{M}_{\text{LOS}}^{-1} \cdot \vec{T}_{6}$

Departure matrix that has small values of matrix elements for current six LOS's on OMEGA

The full map of inferred ion temperatures and its minimum can be extrapolated from six ion-temperature measurements

Ion temperatures away from six LOS's are approximated by $\vec{T}_{new} = \hat{M}_{new} \cdot \hat{M}_{LOS}^{-1} \cdot \vec{T}_6$

Mode $\ell = 2$ has a large neutron-averaged weight for the radial flow within the hot bubble producing a large isotropic velocity variance

Summary/Conclusions

An analytical model has been developed to study three-dimensional flow effects on ion-temperature measurements

- The velocity variance in Brysk ion temperatures is shown to be uniquely determined by a complete set of six hot-spot flow parameters in terms of variance and covariance of the hot-spot flow velocity distribution
- An approximated solution to the minimum inferred ion temperature is derived and is shown to reproduce the thermal ion temperature for low-mode $\ell = 1$
- The isotropic velocity variance for low-mode $\ell = 2$ leads to minimum inferred ion temperatures well above the thermal ion temperature

12