The Hybrid Target Approach: A Promising Path Forward to Mitigate **Laser Imprint in Direct-Drive Inertial Confinement Fusion**

Portland, OR 5–9 November 2018

Summary

Experiments in planar geometry testing the hybrid concept demonstrate a significant reduction in modulation growth

- In phase I, x-ray–driven picket-pulse shocks from a thin high-Z layer were detected with VISAR/SOP
- Shock pressures of several Mbar were inferred from VISAR/SOP measurements
- In phase II, face-on x-ray radiography with 6-ns-long UV pulses measured the modulation growth in planar CH foils and two hybrid targets
- The modulation growth is largest in the CH target and lower in the hybrid targets potentially caused by a reduction in imprint

VISAR: velocity interferometer system for any reflector

Collaborators

R. Betti, A. Bose, S. X. Hu, E. M. Campbell, and S. P. Regan

University of Rochester Laboratory for Laser Energetics

C. McCoy

Sandia National Laboratories

A. Casner and L. Ceurvorst

CELIA University of Bordeaux, France

M. Karasik Naval Research Laboratory

The hybrid target approach might reduce imprint, which helps to increase the target design parameter

X rays from a high-Z layer generate the initial shock while the main drive ablates through the thin shell and implodes the capsule.

- S. Eliezer, J. J. Honrubia, and G. Velarde, Phys. Lett. A 166, 249 (1992);
- R. G. Watt et al., Phys. Rev. Lett. 81, 4644 (1998);
- M. Karasik et al., Phys. Rev. Lett. 114, 085001 (2015);
- S. X. Hu et al., Phys. Plasma 25, 082710 (2018).

E27852a

In phase I, a proof-of-principle experiment was performed in planar geometry to measure the shock pressure from the x-ray pulse

AR: antireflective

Shock pressures of several Mbar were inferred from VISAR/SOP measurements

Blanking caused by free-charge carrier production in quartz layer

ASBO: active shock breakout

One-dimensional hydrodynamic simulations were performed with *LILAC* that show an x-ray–driven shock

E27858a

In phase II, the effect of imprint was studied on OMEGA EP with an SG8-0750 distributed phase plate and no SSD

$\langle I \rangle = 1.4 \times 10^{14} \text{ W/cm}^2$

SSD: smoothing by spectral dispersion TIM: ten-inch manipulator XRFC: x-ray framing camera

A Fourier analysis of the optical depth shows less modulation growth in the hybrid targets

E27864a

OD: optical depth

Experiments in planar geometry testing the hybrid concept demonstrate a significant reduction in modulation growth

- In phase I, x-ray–driven picket-pulse shocks from a thin high-Z layer were detected with VISAR/SOP
- Shock pressures of several Mbar were inferred from VISAR/SOP measurements
- In phase II, face-on x-ray radiography with 6-ns-long UV pulses measured the modulation growth in planar CH foils and two hybrid targets
- The modulation growth is largest in the CH target and lower in the hybrid targets potentially caused by a reduction in imprint

E28068

VISAR: velocity interferometer system for any reflector

Nonuniformities in the drive laser can imprint mass perturbations that seed hydrodynamic instabilities

Imprint is a serious issue for direct-drive ICF that must be mitigated.

S. X. Hu *et al.*, Phys. Plasmas <u>25</u>, 082710 (2018). ICF: inertial confinement fusion

E27868a

The modulation growth was observed in a time range of up to ~5.5 ns

E27863a

