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The onset of a mix signature in radiographs of DT cryo
implosions is consistent with a stability boundary
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Summary

	*	V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).
**		C. Stoeckl et al., Rev. Sci. Instrum. 85, 11E501 (2014);

	C. Stoeckl et al., Phys. Plasmas 24, 056304 (2016).

•	 A stability boundary has been observed in cryogenic DT implosions, 
which can be parameterized by in-flight aspect ratio (IFAR) and adiabat 
a [IFARs = 20 (a/3)1.1]*

•	 A crystal imager is used for short-pulse (20-ps), monochromatic x-ray 
radiography (1.865 keV) of 60-beam OMEGA DT cryogenic implosions**

•	 Mixing of carbon from the CH ablator material into the DT shell can be 
observed in the radiographs through increased absorption

•	 Mixing is observed in the radiographs only when the implosion design 
crosses the stability boundary
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The expected target performance is determined
by the laser pulse shape and the target dimensions

•	 Adiabat a = P/PFermi

•	 vimp = implosion velocity

•	 EL = laser energy

•	 IFAR = shell radius/shell thickness
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Experimental target performance is a strong function of adiabat and IFAR

•	 The ratio of the measured areal density tR and average hot-spot pressure 
GPhsH over the 1-D simulated values are used as a performance metric

•	 The hot-spot pressure can be inferred from the observable quantities: 
neutron yield, ion temperature, and neutron rate
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*V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).

30

25

20

15

IF
A

R

30

25

20

15

IF
A

R

1.5 2.0 2.5 3.0 3.5 4.0

Adiabat

2 3 4

Adiabat

>0.40
0.37
0.34
0.31
0.28
0.25
0.22
0.19
<0.16
Data

Stability boundary IFARs = 20 (a/3)1.1

tR/tR1-D

>0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
<0.40
Data

GPhsHexp

GPhsH1-D

Radiography
experiments



E25617a

Backlit images of the compressed DT shell were taken 
at a convergence of ~7 before peak neutron production

•	 The effects of the deceleration Rayleigh–Taylor instability could distort 
the density profile of the shell closer to peak neutron production
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Simulations assuming the mixing of carbon into the DT shell 
can reproduce the measured absorption
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•	 Exposure time of 200 ps, CR = 4

•	 DT (60 nm) CH (8 nm), 860-nm diam, offset ~25 nm

•	 a ~ 2.5, IFAR ~ 17; YOC = 7%, tR/clean = 78%

The depth of the mixing can 
be inferred by separating 
the DT ice into layers in the 
LILAC simulations
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Small changes in the implosion design can lead 
to significant differences in the mix signature

•	 DT (60 nm) CH (12 nm) 888-nm diam

•	  a ~ 2.5, IFAR ~ 10; YOC = 20%,  tR/clean = 78%

•	 IFARs = 16

•	 DT (60 nm) CH (11 nm) 960-nm diam

•	  a ~ 2, IFAR ~ 15; YOC = 8%, tR/clean = 41%

•	 IFARs = 13
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A trend for mixing consistent with the empirical scaling 
with IFAR and adiabat can be seen the experimental data

•	 Multidimensional simulations* indicate that the mix is caused by laser imprint

•	 Experiments with varying levels of laser smoothing are planned to validate the code
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*	T. J. B. Collins et al., U04.00014, this conference.
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The onset of a mix signature in radiographs of DT cryo
implosions is consistent with a stability boundary

•	 A stability boundary has been observed in cryogenic DT implosions, 
which can be parameterized by in-flight aspect ratio (IFAR) and adiabat 
a [IFARs = 20 (a/3)1.1]*

•	 A crystal imager is used for short-pulse (20-ps), monochromatic x-ray 
radiography (1.865 keV) of 60-beam OMEGA DT cryogenic implosions**

•	 Mixing of carbon from the CH ablator material into the DT shell can be 
observed in the radiographs through increased absorption

•	 Mixing is observed in the radiographs only when the implosion design 
crosses the stability boundary
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Summary/Conclusions

Significant improvements to the radiography setup are in progress. 
The backlighter brightness has been increased by more than 5× 
and a path to improve the spatial resolution has been identified.

	*	V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).
**		C. Stoeckl et al., Rev. Sci. Instrum. 85, 11E501 (2014);

	C. Stoeckl et al., Phys. Plasmas 24, 056304 (2016).
	 †	T. J. Collins et al., UO4.00014, this conference
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A trend for mixing can be seen in the experimental data that is 
consistent with the empirical scaling with IFAR and the adiabat
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•	  a ~ 2.5, IFAR = 17

•	 YOC = 7%,  tR/clean = 92%

•	 IFARs = 16

•	  a ~ 2.0, IFAR = 20

•	 YOC = 9%,  tR/clean = 54%

•	 IFARs = 14

•	  a ~ 4.0, IFAR = 20

•	 YOC = 18%,  tR/clean = 90%

•	 IFARs = 27
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Simulations show that a small amount of carbon 
causes significant absorption in the images

•	 25-kJ low-adiabat pulses

•	 20-ps exposure, 20-ps backlighter

•	 ~200-eV blackbody-equivalent 
backlighter brightness
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The lineouts of the backlit images from the crystal imager 
must be corrected for the backlighter shape
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•	 The backlighter is assumed to be uniform

•	 It is convolved with a Gaussian representing 
the geometric resolution of the imager 

•	 The width and amplitude of the backlighter 
is adjusted to match the signal

Radius (nm)
–400 0 400

S
ig

n
al

 (
ar

b
it

ra
ry

 u
n

it
s) 80

60

40

20

0

Backlighter Resolution
filter

S
ig

n
al

 (
ar

b
it

ra
ry

 u
n

it
s) 80

60

40

20

0

Radius (nm)
–400 0 400

R
es

p
o

n
se

0.008

0.006

0.004

0.002

0.000

Backlighter
shape

Experiment

Self-
emission



E27874

The spatial resolution of the imager is taken into 
account in the post-processing with Spect3D

•	 The resolution measured with a knife-edge target on OMEGA 
is consistent with the ~15 nm used in Spect3D
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