Hot-Electron Generation and Preheat in Direct-Drive Experiments at the National Ignition Facility

Portland, OR 5-9 November 2018

An experimental platform on the NIF has been developed to study the amount of hot-electron preheat in an unablated shell

- Hot-electron transport in National Ignition Facility (NIF) polar-direct-drive (PDD) implosions is studied by comparing hard x-ray (HXR) production in all-plastic implosions with multilayered implosions
- The goal is to diagnose the hot-electron deposition profile in an imploding shell
- Preliminary measurements indicate 0.27±0.06% of laser energy is deposited in the unablated shell; $0.13\pm0.03\%$ is deposited in the outer 20% portion and $0.14\pm0.03\%$ is deposited in the inner 80% of the imploding shell

Hot-electron preheat mitigation using mid-*Z* layers and laser frequency detuning/bandwidth strategies is being explored.*

*R. K. Follett, NI2.00005, this conference.

Collaborators

M. J. Rosenberg, W. Seka, R. Epstein, R. W. Short, R. K. Follett, A. R. Christopherson, R. Betti, P. B. Radha, S. P. Regan, D. H. Froula, and V. N. Goncharov

> University of Rochester Laboratory for Laser Energetics

> > J. F. Myatt

University of Alberta

P. Michel, M. Hohenberger, T. Chapman, and J. D. Moody

Lawrence Livermore National Laboratory

J.W. Bates and A. J. Schmitt

Naval Research Laboratory

Motivation

Hot-electron preheat can degrade fuel compression in direct-drive ignition designs

- Fuel compression is negatively affected if more than ~0.15% of laser energy is coupled into fuel preheat**
- If electron divergence is large, only ~25% of electrons intersect the cold fuel[†]
- Electrons below ~50 keV are stopped in the ablator

 \rightarrow limit of ~0.7% laser energy into hot electrons generated

• Parameters at $n_c/4$:* $T_e \sim 3.5$ to 5 keV, $L_n \sim 600 \ \mu$ m, $I \sim (6 \text{ to } 8) \times 10^{14} \text{ W/cm}^2$

^{*}V. N. Goncharov *et al.*, Phys. Plasmas <u>21</u>, 056315 (2014). ** J. A. Delettrez, T. J. B. Collins, and C. Ye, "Determining Acceptable Limits of Fast-Electron Preheat in Direct-Drive Ignition-Scale Target Designs," to be submitted to Physics of Plasmas. [†]B. Yaakobi *et al.*, Phys. Plasmas <u>20</u>, 092706 (2013). LPI: laser-plasma interaction

• Parameters at $n_c/4$ surface: $T_e \sim 3.2$ keV, $L \sim 400 \ \mu$ m, $I \sim (4 \text{ to } 8) \times 10^{14} \text{ W/cm}^2$ depending on the polar angle

TC14559

*M. Hohenberger et al., Phys. Plasmas 22, 056308 (2015).

The energy deposited into a payload can be inferred by subtracting the all-CH HXR from the HXR of a Ge-doped layered target

• $E_{rad}^{layered}$ and E_{rad}^{all-CH} are HXR measurements

TC14313a

*A. R. Christopherson and R. Betti, to be submitted to Physical Review Letters.

Time-resolved scattered-light spectra indicate that LPI is the same between the all-CH and Ge-doped payload implosions

Similar LPI → similar hot-electron source

TC14560

FABS: full-aperture backscatter station SRS: stimulated Raman scattering

The hard x-ray measurement recorded with the FFLEX* diagnostic shows enhanced HXR emission with the Ge dopant

*M. Hohenberger et al., Rev. Sci. Instrum. 85, 11D501 (2014). FFLEX: filter-fluorescer x-ray diagnostic

$T_{\rm HXR} = T_{\rm hot} \approx 50 \; {\rm keV}$

Preliminary measurements indicate 0.27±0.06 % of laser energy is deposited in the unablated shell; 0.13±0.03 % is deposited in the outer 20% portion and 0.14 ± 0.03 % is deposited in the inner 80% of the imploding shell

	N180903-001 [45 μm CH, 61 μm CH(Ge)]	N180 [60 μm CH
Total hot-electron coupled energy (kJ)	9.2±1.9	8
Laser energy (%)	1.29±0.3	1.:
Energy into payload (kJ)	1.9±0.4	1
Laser energy (%)*	0.27±0.06	0.1

 About a quarter of total hot-electron energy is coupled to the unablated shell, indicating a wide angular divergence

0904-001 49 μ m CH(Ge)]

- .9±1.9
- 25 + 0.3
- +0.25
- 4±0.03

An experimental platform on the NIF has been developed to study the amount of hot-electron preheat in an unablated shell

- Hot-electron transport in National Ignition Facility (NIF) polar-direct-drive (PDD) implosions is studied by comparing hard x-ray (HXR) production in all-plastic implosions with multilayered implosions
- The goal is to diagnose the hot-electron deposition profile in an imploding shell
- Preliminary measurements indicate 0.27±0.06% of laser energy is deposited in the unablated shell; $0.13\pm0.03\%$ is deposited in the outer 20% portion and $0.14\pm0.03\%$ is deposited in the inner 80% of the imploding shell

Hot-electron preheat mitigation using mid-*Z* layers and laser frequency detuning/bandwidth strategies is being explored.*

*R. K. Follett, NI2.00005, this conference.