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An experimental platform on the NIF has been developed to study 
the amount of hot-electron preheat in an unablated shell

•	 Hot-electron transport in National Ignition Facilty (NIF) polar-direct-drive (PDD) 
implosions is studied by comparing hard x-ray (HXR) production in all-plastic 
implosions with multilayered implosions

•	 The goal is to diagnose the hot-electron deposition profile in an imploding shell

•	 Preliminary measurements indicate 0.27!0.06% of laser energy is deposited in the 
unablated shell; 0.13!0.03% is deposited in the outer 20% portion and 0.14!0.03% 
is deposited in the inner 80% of the imploding shell
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Summary

Hot-electron preheat mitigation using mid-Z layers and laser 
frequency detuning/bandwidth strategies is being explored.*  

*R. K. Follett, NI2.00005, this conference.
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Hot-electron preheat can degrade fuel compression in direct-drive ignition designs

4

Motivation
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	*	V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).
**	J. A. Delettrez, T. J. B. Collins, and C. Ye, “Determining 
				Acceptable Limits of Fast-Electron Preheat in Direct-Drive 
				Ignition-Scale Target Designs,” to be submitted to Physics of Plasmas.
	 †	B. Yaakobi et al., Phys. Plasmas 20, 092706 (2013).
LPI: laser–plasma interaction

•	 Fuel compression is negatively affected 
if more than ~0.15% of laser energy 
is coupled into fuel preheat** 

•	 If electron divergence is large, only ~25% 
of electrons intersect the cold fuel†

•	 Electrons below ~50 keV are stopped 
in the ablator

•	 Parameters at nc/4:* Te ~ 3.5 to 5 keV, Ln ~ 600 nm, 	
						      I ~ (6 to 8) × 1014 W/cm2

" limit of ~0.7% laser energy 
    into hot electrons generated
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Hot-electron transport in NIF PDD implosions* is studied by comparing HXR 
between all-plastic and multilayered implosions
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*	M. Hohenberger et al., Phys. Plasmas 22, 056308 (2015).

Different buried depths of the Ge-doped layer are examined to 
diagnose the hot-electron deposition profile in the imploding shell

•	 Parameters at nc/4 surface: Te ~ 3.2 keV, L ~ 400 nm, I ~ (4 to 8) × 1014 W/cm2 depending on the polar angle
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The energy deposited into a payload can be inferred by subtracting the all-CH 
HXR from the HXR of a Ge-doped layered target  

•	 E
E

lost

rad  is taken from theory; it is proportional to Z
Z2

, depends on Thot, and logarithmically on plasma density

•	 E layered
rad  and E all CH

rad
-  are HXR measurements
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*A. R. Christopherson and R. Betti, to be submitted to Physical Review Letters. 
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Time-resolved scattered-light spectra indicate that LPI is the same between 
the all-CH and Ge-doped payload implosions 
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Similar LPI " similar hot-electron source
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FABS: full-aperture backscatter station  
SRS: stimulated Raman scattering
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The hard x-ray measurement recorded with the FFLEX* diagnostic shows 
enhanced HXR emission with the Ge dopant
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*	M. Hohenberger et al., Rev. Sci. Instrum. 85, 11D501 (2014).
FFLEX: filter-fluorescer x-ray diagnostic

Time-integrated HXR spectra
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Preliminary measurements indicate 0.27!0.06 % of laser energy is deposited 
in the unablated shell; 0.13!0.03 % is deposited in the outer 20% portion and 
0.14!0.03 % is deposited in the inner 80% of the imploding shell  
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N180903-001
[45 nm CH, 61 nm CH(Ge)]

N180904-001
[60 nm CH, 49 nm CH(Ge)]

Total hot-electron coupled energy (kJ) 9.2!1.9 8.9!1.9

Laser energy (%) 1.29!0.3 1.25!0.3

Energy into payload (kJ) 1.9!0.4 1!0.25 
Laser energy (%)* 0.27!0.06 0.14!0.03 

•	 About a quarter of total hot-electron 
energy is coupled to the unablated shell, 
indicating a wide angular divergence
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Summary/Conclusions

*R. K. Follett, NI2.00005, this conference.

An experimental platform on the NIF has been developed to study 
the amount of hot-electron preheat in an unablated shell

•	 Hot-electron transport in National Ignition Facilty (NIF) polar-direct-drive (PDD) 
implosions is studied by comparing hard x-ray (HXR) production in all-plastic 
implosions with multilayered implosions

•	 The goal is to diagnose the hot-electron deposition profile in an imploding shell

•	 Preliminary measurements indicate 0.27!0.06% of laser energy is deposited in the 
unablated shell; 0.13!0.03% is deposited in the outer 20% portion and 0.14!0.03% 
is deposited in the inner 80% of the imploding shell

Hot-electron preheat mitigation using mid-Z layers and laser 
frequency detuning/bandwidth strategies is being explored.*  


