Laser Wakefield Acceleration Platform for OMEGA EP

J.L. Shaw **University of Rochester** Laboratory for Laser Energetics

60th Annual Meeting of the **American Physical Society Division of Plasma Physics** Portland, OR 5–9 November 2018

Summary

LLE is developing gas-jet capabilities as a platform for advanced radiography sources

- A gas-jet system has been activated for laser wakefield acceleration (LWFA) on OMEGA EP
- Two paths to modified focal geometries are under development
- Preliminary LWFA experiments on OMEGA EP have produced 100 MeV electron beams

Collaborators

Z. Barfield, D. Haberberger, A. M. Hansen, J. Katz, D. Mastrosimone, and D. H. Froula

> University of Rochester Laboratory for Laser Energetics

F. Albert, P. M. King, N. Lemos, and J. Williams

Lawrence Livermore National Laboratory

P. Fan and Y. Lu

University of Nebraska Lincoln

An ultrafast gas-jet system was developed for use on OMEGA EP

- The gas jet-system was specifically designed to limit gas release in case of failure to protect sensitive electronics in the OMEGA EP compressor
 - maximum gas release in event of total failure: 30 cm³
- The gas-jet valve is fast opening; the gas jet opens and closes in ~100 μ s with a 0.5-Hz repetition rate
- Built by Alameda Applied Sciences Corporation

E27713a

The gas jet has been activated for use on OMEGA and OMEGA EP

Parameter	Value
Systems	OMEGA EP (long [*] and short ^{**} pulse) OMEGA (long [†] pulse)
Mach numbers	3 to 6
Nozzle diameters	500 μ m to 10 mm
Gas fills	H ₂ , He, N ₂ , Ar, Ne, Kr, Xe, CO ₂
Fill pressures	Up to 720 psi (Demonstrated densities up to 4×10^{20} cm ⁻³)

*PI: D. Haberberger; ** PI: J. L. Shaw; [†]PI: A. Hansen

The gas jet has been activated for use on OMEGA and OMEGA EP

Parameter	Value
Systems	OMEGA EP (long [*] and short ^{**} pulse) OMEGA (long [†] pulse)
Mach numbers	3 to 6
Nozzle diameters	500 μ m to 10 mm
Gas fills	H ₂ , He, N ₂ , Ar, Ne, Kr, Xe, CO ₂
Fill pressures	Up to 720 psi (Demonstrated densities up to 4×10^{20} cm ⁻³)

Space (μ m)

*PI: D. Haberberger; ** PI: J. L. Shaw; [†]PI: A. Hansen

600 1000

Path 1

Apodizer capability is under development to convert OMEGA EP from f/2 to longer focal lengths

Plasma lenses are also under development to convert OMEGA EP from f/2 to longer focal lengths

Plasma lenses are also under development to convert OMEGA EP from f/2 to longer focal lengths

Self-modulated laser wakefield accelerator (SMLWFA) experiments with the gas jet were performed on OMEGA EP

Parameter	Value
f-number	6, 8
Pulse length	~700 fs
a ₀	2.6 to 3.2
Nozzle diameter	4 mm
Mach number	5
Gas	100% He
Density	1, 3 $ imes$ 10 ¹⁹ cm ^{-3}
Focal position	500 <i>µ</i> m

Modified

Preliminary results showed 100-MeV electron beams

E28128 ROCHESTER

MELIORA S

Summary/Conclusions

LLE is developing gas-jet capabilities as a platform for electron and advanced radiography sources

- A gas-jet system has been activated for laser wakefield acceleration (LWFA) on OMEGA EP
- Two paths to modified focal geometries are under development
- Preliminary LWFA experiments on OMEGA EP have produced 100 MeV electron beams

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy/National Science Foundation under Award # DE-SC0017950, and by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

Initial self-modulated laser wakefield accelerator (SMLWFA) experiments with the gas jet were performed on OMEGA EP

Parameter	Value
f-number	~2
Pulse length	600 to 800 fs
Laser energy	60 J, 300 J
a ₀	4, 9.6
Nozzle diameter	1 mm, 4 mm
Mach number	5
Gas	95/5 He/N ₂ or 100% He
Fill pressure	65 to 410 psi
Density	8×10^{18} to 3×10^{19} cm^{-3}
Focal position	–100 to 500 μ m

Electron– positron proton spectrometer (EPPS)

*Not to scale

Initial results showed a significant difference based on shot energy

- For shot energies of 60 J ($a_0 = 4$), no electrons with energies above 1 MeV were produced
- For shot energies of 300 J ($a_0 = 9.6$), electrons were observed
 - cutoff energies of ~8 MeV for 1-mm-diam nozzles
 - cutoff energies of ~14 MeV for 4-mm-diam nozzles

E27717b

OSIRIS simulations were used to investigate the low-electron energies

Focal geometry of OMEGA EP needs to be better modeled in OSIRIS

- OMEGA EP: focal geometry $\sim f/\# = 2$; the laser spot is not very clean for LWFA applications
- OSIRIS: focuses to the given laser spot using ideal Gaussian beam

The discrepancy between experimental results and simulation likely results from this difference.

E27733

Nominal focal spot