

Introduction		
	• Elastic scattering of electromagnetic radiation from free charged particles	Scattering ge
Thomson scattering	 Electrons accelerate in the radiation's electric field, causing the electrons to reradiate 	x E _{i0} K
	 Scattered intensity is proportional to the electron density and temperature 	φ \vec{k}_{L} y \vec{k}_{s} \vec{k}_{s}
Rayleigh scattering	• Elastic scattering of electromagnetic radiation from ions	$\alpha = \frac{1}{k\lambda_{\rm D}}$
		Noncollective scattering
Compton scattering	 Energy downshift of the scattered spectrum as a result of electron recoil 	
		λ
The t	otal dynamic structure factor [1]	Incoherent scatte intera
	$\mathbf{S}(\mathbf{k}, \boldsymbol{\omega}) = \left f_{1}(\mathbf{k}) + \mathbf{q}(\mathbf{k}) \right ^{2} \mathbf{S}_{ii}(\mathbf{k}, \boldsymbol{\omega}) + \mathbf{Z}_{f} \mathbf{S}_{ee}^{0}(\mathbf{k}, \boldsymbol{\omega})$	ω) + $Z_b \int \tilde{S}_{ce}(k, \omega - \omega)$
	Elastic scattering component free electro	tering from ons bound co
Si q Zi	$(\mathbf{k}, \boldsymbol{\omega}) = \text{ion-ion dynamic structure factor}$ $(\mathbf{k}) = \text{Fourier transform of free-electron cloud}$ $\mathbf{k} = \text{number of free (or valence) electrons}$	The terms model assum direct m
S el	$\begin{bmatrix} 0 \\ ee \end{bmatrix} (\mathbf{k}, \mathbf{\omega}) = \text{high-frequency part of the ectron-electron correlation function} \end{bmatrix}$	Rancappro
f ₁ Z	(<i>k</i>) = ionic form factor for bound electrons b = bound electrons	Hartree–Fo appro

Atomic and Electronic Structure of Warm Dense Silicon

R. SAHA,¹ J. TOPP-MUGGLESTONE,² G. GREGORI,² T. WHITE,³ S. P. REGAN,¹ G. W. COLLINS,¹ and J. R. RYGG¹

¹Department of Physics and Astronomy, Department of Mechanical Engineering,

University of Rochester, Laboratory for Laser Energetics, ² University of Oxford, and ³University of Reno, Nevada

N	ext Steps
	 Build a new spectrom resolution for analyzing Compare ionization from the sector fro
	3. Analyze shock-compi orientations
	4. Explore material struc
	5. Compare different ion bound–free electron e
R	eferences
	[1] B. J. B. C [2] S. H. Gle [3] B. J. B. C [4] J. R. Ryg
E27655a	

Motivation

We are developing a new platform to directly measure and understand the structure and transport of warm dense matter.

Challenges

Warm Dense Matter High temperature (eV), high pressure (Mbar)

- Challenging to model
- Theoretical descriptions break down
- Experimentally difficult to produce
- Measurements limited to a few parameters
- Relies on computer simulations and model fitting

Goals

- 1. Measure density and temperature states by constraining the assumptions with multiple simultaneous diagnostics.
- 2. Calculate structure factors without model assumptions.

3. Estimate ionization from Thomson-scattering data and constraint those with VISAR optical reflectivity measurements.

VISAR: velocity interferometry for any reflector

Introduction

 $S_{ii}(k, \omega) = \text{ion-ion dynamic structure factor}$ q(k) = Fourier transform of free-electron cloud $Z_f = \text{number of free (or valence) electrons}$

 $S_{ee}^{0}(k, \omega)$ = high-frequency part of the electron–electron correlation function

 $f_1(k)$ = ionic form factor for bound electrons Z_b = bound electrons

Preliminary Experimental Results

Next Steps

- 1. Build a new spectrometer in von Hamos geometry to obtain high throughput and high resolution for analyzing Thomson-scattering data
- 2. Compare ionization from scattering and reflections
- 3. Analyze shock-compressed Si and Ge inelastic data, including different crystal orientations
- 4. Explore material structure in the collective regime
- 5. Compare different ionization state and build an understanding of bound–bound and bound–free electron effects

References

- [2] S. H. Glenzer and R. Redmer, Rev. Mod. Phys. <u>81</u>, 1625 (2009).
- [3] B. J. B. Crowley, High Energy Density Phys. <u>13</u>, 84 (2014).
- [4] J. R. Rygg et al., Rev. Sci. Instrum. <u>83</u>, 113904 (2012).