Laser–Plasma Interaction Experiments at Direct-Drive **Ignition-Relevant Scale Lengths at the National Ignition Facility**

M. J. Rosenberg **University of Rochester** Laboratory for Laser Energetics

ROCHESTER

log ₁₀	
	3.0
	2.5
	2.0

- 2.0
- 1.5

60th Annual Meeting of the American Physical Society Division of Plasma Physics Portland, OR 5-9 November 2018

Summary

Planar and spherical experiments at the National Ignition Facility (NIF) have investigated laser-plasma interaction (LPI) hot-electron production and coupling at direct-drive ignition-relevant coronal conditions

- Planar experiments achieve scale lengths of $L_n \sim 400$ to 700 μ m, electron temperatures of $T_e \sim 3$ to 5 keV, and laser intensities of 0.5 to 1.5×10^{15} W/cm²
- Hot-electron generation of the order of $f_{hot} \sim 0\%$ to 3% and $T_{\rm hot} \sim 50$ keV has been observed
- Stimulated Raman scattering (SRS) is inferred to be the dominant LPI mechanism, although recent measurements $(3\omega/2)$ have uncovered evidence of two-plasmon decay (TPD) as well
- Recent spherical experiments have diagnosed hot-electron coupling (preheat) to an implosion and estimate a wide angular divergence

2

A. A. Solodov, R. K. Follett, W. Seka, S. P. Regan, R. Epstein, A. R. Christopherson, R. Betti, A. V. Maximov, T. J. B. Collins, V. N. Goncharov, R. W. Short, D. P. Turnbull, D. H. Froula, and P. B. Radha

> **University of Rochester Laboratory for Laser Energetics**

J. F. Myatt

University of Alberta Department of Electrical and Computer Engineering

P. Michel, M. Hohenberger, L. Masse, G. Swadling, J. S. Ross, T. Chapman, and J. D. Moody

Lawrence Livermore National Laboratory

J. W. Bates and A. J. Schmitt

Naval Research Laboratory

Motivation

Direct-drive ignition designs predict long density scale lengths and high electron temperatures at which LPI may generate hot-electron preheat

Radius (mm)

Experiments must be performed at these conditions to understand LPI at the NIF ignition scale.

E25732g

Motivation

Planar experiments on the NIF were designed to achieve plasma conditions comparable to direct-drive ignition designs

ROCHESTER

$(4 \text{ to } 15) \times 10^{14}$

A. A. Solodov et al., J06.00010, this conference.

Hot-electron generation of f_{hot} up to 3% and T_{hot} of 40 to 60 keV has been inferred in planar CH and Si targets at intensities around 10¹⁵ W/cm²

Intensity around 5×10^{14} W/cm² may be acceptable for preheat, but we need to understand: (1) LPI mechanisms (for mitigation), and (2) how hot electrons diverge or couple to an implosion.

M. Rosenberg et al. Phys. Rev. Lett. 120, 055001 (2018).

Optical data demonstrate different LPI physics on the NIF than on OMEGA—SRS dominates the scattered-light spectrum (both at and below $n_c/4$)

On the NIF, ~5% of laser energy is converted to SRS, consistent with the observed hot-electron fraction and suggestive of SRS being the dominant hot-electron source, although this does not rule out the presence of TPD.

M. Rosenberg et al., Phys. Rev. Lett. <u>120</u>, 055001 (2018). *W. Seka et al., Phys. Plasmas 16, 052701 (2009).

In addition to optical measurements, recent NIF experiments diagnosed $3\omega/2$ emission, which revealed evidence of TPD

The $3\omega/2$ doublet is suggestive of some TPD activity, although this is consistent with a SRS-dominated regime.

E27532a

A spherical-geometry platform has been implemented on the NIF to diagnose the coupling of hot electrons to an imploding shell

Difference in hard x-ray signals between mass-equivalent CH and multilayered implosions \rightarrow hot-electron energy deposited in the inner shell layer.

> *Platform adapted from OMEGA: A. R. Christopherson et al., Bull. Am. Phys. Soc. 61, BAPS.2016.DPP.NO5.7 (2016). A. A. Solodov et al., J06.00010, this conference.

Experiments demonstrate an identical SRS/hot-electron source and an ~2× enhancement of HXR signal in the doped targets

Hard x-ray enhancement is consistent with a wide angular divergence and a small fraction of hot-electron energy coupled to the inner shell layer.

A. A. Solodov et al., J06.00010, this conference.

Summary/Conclusions

Planar and spherical experiments at the National Ignition Facility (NIF) have investigated laser-plasma interaction (LPI) hot-electron production and coupling at direct-drive ignition-relevant coronal conditions

- Planar experiments achieve scale lengths of $L_n \sim 400$ to 700 μ m, electron temperatures of $T_e \sim 3$ to 5 keV, and laser intensities of 0.5 to 1.5×10^{15} W/cm²
- Hot-electron generation of the order of $f_{hot} \sim 0\%$ to 3% and $T_{\rm hot} \sim 50$ keV has been observed
- Stimulated Raman scattering (SRS) is inferred to be the dominant LPI mechanism, although recent measurements $(3\omega/2)$ have uncovered evidence of two-plasmon decay (TPD) as well
- Recent spherical experiments have diagnosed hot-electron coupling (preheat) to an implosion and estimate a wide angular divergence

These results indicate a viable ignition-design space for direct drive.

11

Appendix

SRS observations correlate with hard x-ray measurements

CH outers—after 4.5 ns CH inners—after 4.5 ns Si inners—after 4.5 ns 0.04 0.06

FFLEX: filter-fluorescer x-ray diagnostic

The dominance of SRS at the NIF scale may be partially explained by evaluating the absolute thresholds of SRS versus TPD

Kochester

E26298b

3

2

0

M. Rosenberg et al. Phys. Rev. Lett. 120, 055001 (2018).

14

The tolerable fraction of hot electrons generated (f_{hot}) depends on how the electrons couple to an implosion

E27569a ROCHESTER *OMEGA experiments described in B. Yaakobi et al., Phys. Plasmas 20, 092706 (2013).

