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Planar and spherical experiments at the National Ignition Facility (NIF) have 
investigated laser–plasma interaction (LPI) hot‑electron production  
and coupling at direct‑drive ignition‑relevant coronal conditions
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Summary

• Planar experiments achieve scale lengths of Ln ~ 400 to 700 nm,  
electron temperatures of Te ~ 3 to 5 keV, and laser intensities  
of 0.5 to 1.5 × 1015 W/cm2

• Hot‑electron generation of the order of fhot ~ 0% to 3%  
and Thot ~ 50 keV has been observed

• Stimulated Raman scattering (SRS) is inferred to be the dominant LPI 
mechanism, although recent measurements (3~/2) have uncovered  
evidence of two‑plasmon decay (TPD) as well

• Recent spherical experiments have diagnosed hot‑electron coupling 
(preheat) to an implosion and estimate a wide angular divergence
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Direct-drive ignition designs predict long density scale lengths and high 
electron temperatures at which LPI may generate hot-electron preheat
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Experiments must be performed at these conditions  
to understand LPI at the NIF ignition scale.
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Planar experiments on the NIF were designed to achieve plasma  
conditions comparable to direct‑drive ignition designs

NIF ignition 
scale

NIF planar 
experiments

Ln (nm) 500 to 600 400 to 700
Te (keV) 3.5 to 5 3 to 5
IL (W/cm2) (6 to 8) × 1014 (4 to 15) × 1014

5

CH

2-D DRACO-simulated 
plasma conditions at nc/4

Planar platform
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Hot‑electron generation of fhot up to 3% and Thot of 40 to 60 keV has been 
inferred in planar CH and Si targets at intensities around 1015 W/cm2
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M. Rosenberg et al. Phys. Rev. Lett. 120, 055001 (2018).

Intensity around 5 × 1014  W/cm2 may be acceptable for preheat, but we need to understand:  
(1) LPI mechanisms (for mitigation), and (2) how hot electrons diverge or couple to an implosion.
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Optical data demonstrate different LPI physics on the NIF than on OMEGA—SRS 
dominates the scattered‑light spectrum (both at and below nc/4)
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On the NIF, ~5% of laser energy is converted to SRS, consistent with the observed hot‑electron fraction and 
suggestive of SRS being the dominant hot‑electron source, although this does not rule out the presence of TPD.

Optical streaked
spectrometer

NBI Q33B
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In addition to optical measurements, recent NIF experiments  
diagnosed 3~/2 emission, which revealed evidence of TPD
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The 3~/2 doublet is suggestive of some TPD activity, although  
this is consistent with a SRS‑dominated regime.
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A spherical‑geometry platform has been implemented on the NIF  
to diagnose the coupling of hot electrons to an imploding shell
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Difference in hard x‑ray signals between mass‑equivalent CH and multilayered  
implosions " hot‑electron energy deposited in the inner shell layer.
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Experiments demonstrate an identical SRS/hot‑electron source  
and an ~2× enhancement of HXR signal in the doped targets
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Hard x‑ray enhancement is consistent with a wide angular divergence and  
a small fraction of hot‑electron energy coupled to the inner shell layer.

A. A. Solodov et al., J06.00010, this conference.
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Summary/Conclusions 

These results indicate a viable ignition‑design space for direct drive.

Planar and spherical experiments at the National Ignition Facility (NIF) have 
investigated laser–plasma interaction (LPI) hot‑electron production  
and coupling at direct‑drive ignition‑relevant coronal conditions

• Planar experiments achieve scale lengths of Ln ~ 400 to 700 nm,  
electron temperatures of Te ~ 3 to 5 keV, and laser intensities  
of 0.5 to 1.5 × 1015 W/cm2

• Hot‑electron generation of the order of fhot ~ 0% to 3%  
and Thot ~ 50 keV has been observed

• Stimulated Raman scattering (SRS) is inferred to be the dominant LPI 
mechanism, although recent measurements (3~/2) have uncovered  
evidence of two‑plasmon decay (TPD) as well

• Recent spherical experiments have diagnosed hot‑electron coupling 
(preheat) to an implosion and estimate a wide angular divergence
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SRS observations correlate with hard x-ray measurements
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Time-resolved SRS and hard x-ray signal
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The dominance of SRS at the NIF scale may be partially explained  
by evaluating the absolute thresholds of SRS versus TPD 
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M. Rosenberg et al. Phys. Rev. Lett. 120, 055001 (2018).
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The tolerable fraction of hot electrons generated (fhot)  
depends on how the electrons couple to an implosion
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Tolerable fhot ~0.7% Tolerable fhot ~0.2%

* OMEGA experiments described in B. Yaakobi et al., Phys. Plasmas 20, 092706 (2013).

Direct-drive implosion
Wide angular divergence* Narrow angular divergence

DT fuel

LPI hot 
electrons

nc/4
surface

CH 
ablator


