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The dependence of hot-spot mix* on the design adiabat  
(a = Pshell/PFermi) for laser-direct-drive (LDD) implosions  
of DT cryogenic targets was measured 

• The adiabat of the implosion on the OMEGA laser was controlled by 
adjusting the temporal shape of the laser drive pulse

• Perturbations seeded by debris, target imperfections, engineering 
features (e.g., stalk or fill tube), and laser imprint** are amplified by the 
Richtmyer–Meshkov instability during the shock transit of the shell and 
by the ablative Rayleigh–Taylor instability during the acceleration phase† 

• The mixing of Ge-doped plastic ablator material with the interior DT fuel 
was diagnosed with x-ray spectroscopy at stagnation* 
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Summary

  *S. P. Regan et al., Phys. Rev. Lett. 111, 045001 (2013).
** S. X. Hu et al., Phys. Plasmas 17, 102706 (2010).
  †  I. V. Igumenshchev et al., Phys. Plasmas 20, 082703 (2013). 

The experimental results show the expected trend of  
decreasing hot-spot mix mass as the adiabat is increased.
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The adiabat of the implosion on the OMEGA laser was controlled  
by adjusting the temporal shape of the laser drive pulse
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The Ge dopant in the CH ablator was localized to the inner  
layer to reduce radiative preheat from the coronal plasma.

CHGe [8.0 nm, 0.4% or 0.7%]CHGe [8.0 nm, 0.4% or 0.7%]

DT [50 nm]

43
0 
n

m
CH [5.0 nm]

CHGe [3.0 nm, 0.6% or 1%]CHGe [3.0 nm, 0.6% or 1%]
DT [50 nm]

Time (ns)

To
ta

l l
as

er
 p

ow
er

 (T
W

)

25

20

15

10

5

0
0 1 2 3

DT vapor DT vapor

t =
 1

.8
 ta

rg
et

 a
cc

el
er

at
es

t =
 2

.0
 C

H
G

e 
fu

lly
 a

bl
at

ed
*

(Not to scale)

Low adiabat
Mid adiabat
High adiabat

P
P

Fermi

shella =

kg k V–RT RT ablc a b=

V /
abl

3 5?a

D. T. Michel et al., Rev. Sci. Instrum. 83, 10E530 (2012).



TC14588

Excessive x-ray preheat from the ablated Ge shell could make the 
DT ice/CH ablator interface hydrodynamically unstable
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The DT ice/CH interface is not stable for the plastic ablator doped uniformly with Ge.
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Mixing the Ge-doped plastic ablator material with the interior  
DT fuel was diagnosed with x-ray spectroscopy at stagnation* 
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Two time-integrated 1-D imaging x-ray sprectrometers—
 XRS1, XRS2—were fielded on each shot.

  XRS: x-ray source
* B. A. Hammel et al., Phys. Plasmas 18, 056310 (2011);
   S. P. Regan et al., Phys. Plasmas 19, 056307 (2012);
  S. P. Regan et al., Phys. Rev. Lett. 111, 045001 (2013).
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The hot-spot mix was inferred using an atomic physics model assuming  
a single ne and Te, and an average photon escape path*
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Similar spectra and hot-spot mix were diagnosed for XRS1 and XRS2.

 *S. P. Regan et al., Phys. Rev. Lett. 111, 045001 (2013).  
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2 × 1024 cm–3 3.2 keV 0.075 mg/cm2 28.7 ng
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The experimental results show the hot-spot mix mass  
decreases as the adiabat increases

Ablation-front instability + 
DT/CH interface instability Ablation-front instability
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The experimental results show the hot-spot mix mass  
decreases as the adiabat increases

Ablation-front instability + 
DT/CH interface instability Ablation-front instability
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Summary/Conclusions

The experimental results show the expected trend of  
decreasing hot-spot mix mass as the adiabat is increased.

The dependence of hot-spot mix* on the design adiabat  
(a = Pshell/PFermi) for laser-direct-drive (LDD) implosions  
of DT cryogenic targets was measured 

• The adiabat of the implosion on the OMEGA laser was controlled by 
adjusting the temporal shape of the laser drive pulse

• Perturbations seeded by debris, target imperfections, engineering 
features (e.g., stalk or fill tube), and laser imprint** are amplified by the 
Richtmyer–Meshkov instability during the shock transit of the shell and 
by the ablative Rayleigh–Taylor instability during the acceleration phase† 

• The mixing of Ge-doped plastic ablator material with the interior DT fuel 
was diagnosed with x-ray spectroscopy at stagnation* 

  *S. P. Regan et al., Phys. Rev. Lett. 111, 045001 (2013).
** S. X. Hu et al., Phys. Plasmas 17, 102706 (2010).
  †  I. V. Igumenshchev et al., Phys. Plasmas 20, 082703 (2013). 


