Characterizing Magnetic and Electric Fields from Laser-Driven Coils Using Axial Proton Probing

J. L. Peebles University of Rochester Laboratory for Laser Energetics

ROCHESTER

60th Annual Meeting of the American Physical Society Division of Plasma Physics Portland, OR 5–9 November 2018

Summary

Laser-driven coils can deliver a highly localized magnetic field without using conventional pulsed-power devices

- Axial proton probing clearly distinguishes magnetic and electric fields
- Experiments on OMEGA EP demonstrate the generation of a 60-T field at the center of the coil loop

Axial radiographs can only be reproduced with a combination of electric and magnetic fields

J. R. Davies, D. H. Barnak, A. B. Sefkow, P. A. Gourdain, R. Betti University of Rochester Laboratory for Laser Energetics

A. V. Arefiev University of California San Diego

Laser-driven coils rely on a laser to eject electrons from a target, causing a current to be drawn from any connected source

Transverse proton probing of laser-driven coils leaves a lot of room for interpretation

- The primary, axial magnetic field is probed with a transverse proton beam, but so is the radial electric field
- In previous proton-probing experiments the protons were completely expelled from a region around the coils
- The radial component of the magnetic field is also significant and causes rotation of a mesh fiducial, distinguishing it from the radial electric field

Axial proton probing separates magnetic and electric fields and provides information on plasma conditions inside the coil.

Experimental setup for axial proton probing of doubleand single-plate, laser-driven coils on OMEGA EP

ROCHESTER

Double-plate shots showed no evidence of a magnetic field at 1 ns

- Charge buildup is clearly seen at the center of the coil
- Deflection is not consistent with a magnetic field
- Plasma appears to have filled the gap between the plates or wires causing a "short circuit"

20-MeV proton probe corresponding to 1.1 ns after the start of the long pulse

Proton tracing with specified current and charge distributions was used to analyze the results

ROCHESTER

Comparing synthetic and experimental radiographs at two proton energies help separate B and E component contributions

20-MeV protons

40-MeV protons

Comparing synthetic and experimental radiographs at two proton energies help separate B and E component contributions

Comparing synthetic and experimental radiographs at two proton energies help separate B and E component contributions

ROCHESTER

Single-plate results indicate an axial magnetic field of ~60 T

 Distinctly different features are seen with single-plate shots; mesh stretching and twisting instead of focusing

 Mesh twisting near the parallel wires is most likely caused by magnetic fields

20-MeV proton probe corresponding to 1.1 ns after the start of the long pulse

The features can only be duplicated with <u>both</u> current and charge with the current localized at the edge of an electron sheath

A combination of E and B fields reproduces both 20- and 40-MeV films with only minor discrepancies

20-MeV protons 40-MeV protons Simulated Measurement Simulated Measurement HIO H8

A combination of magnetic and electric fields reproduces both 20and 40-MeV films with only minor discrepancies

20-MeV protons

40-MeV protons

A combination of magnetic and electric fields reproduces both 20and 40-MeV films with only minor discrepancies

20-MeV protons

40-MeV protons

Laser-driven coils can deliver a highly localized magnetic field without using conventional pulsed-power devices

- Axial proton probing clearly distinguishes magnetic and electric fields
- Experiments on OMEGA EP demonstrate the generation of a 60-T field at the center of the coil loop

UR

Axial radiographs can only be reproduced with a combination of electric and magnetic fields

Future experiments will work toward developing ways to model laserdriven coils and quantify mesh displacement.

Axial radiographs can only be reproduced with a combination of electric and magnetic fields

	-			**			-				
				e a se			100				
巍			滅	41 S			ž.				
				, Č	t part	- 70.4P	1				
瀫			×								
			1						14		-
	*	1 :									
蠹								驗			穀
				驟				緻	*		
			1		AN					25	
¢٢	题	2			-	W.S.					-

ROCHESTER

A combination of E and B fields reproduces both the 20 and 40 MeV films with only minor discrepancies

20 MeV Protons

40 MeV Protons

LLE

Transverse proton probing has difficulties distinguishing a magnetic field from electric field

The radial component of a magnetic field rotates axial probing protons; electric field focuses/defocuses protons

Protons initial incidence angle and first deflection breaks symmetry of radial magnetic field

