
High-Pressure Phase Diagram of Silicon

R. Paul
University of Rochester
Laboratory for Laser Energetics

60th Annual Meeting of the American Physical 
Society Division of Plasma Physics

Portland, OR
5–9 November 2018

1

Hugoniot (Q
H)

cdcd shsh hcphcp

fccfcc

bccbcc

dhcpdhcp
ImmaImma

CmceCmce

Liquid

Pressure (GPa)

Te
m

pe
ra

tu
re

 (K
)

102
100 101 102 103

103

104

Brazhkin (1995)
Bundy (1964)
Cannon (1974)
Duclos (1987)
Hanfland (1999)
Jayaraman (1963)
Kubo (2008)
Lees (1965)
Turneaure (2018)

Experimental Data

scsc

bctbct

Hugoniot (AH)



TC14497

A high-pressure phase diagram of silicon was constructed using density 
functional theory (DFT) calculations up to a pressure of 4 TPa    

• The phases of Imma* and Cmce-16** were predicted on the phase 
diagram from computations for the first time, consistent with previous 
experimental observations

• High-pressure anomalous transition of face-centered cubic (fcc) to 
body-centered cubic (bcc) to simple cubic (sc) was predicted to occur 
at 2.87 TPa and 3.89 TPa

• Anharmonic contributions to the lattice free energy were determined 
to be essential for accurate analysis of the cubic diamond and 
orthorhombic structures
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Summary

  * M. I. McMahon et al., Phys. Rev. B 50, 739 (1994).
    Imma: base-centered orthorhombic
** M. Hanfland et al., Phys. Rev. Lett. 82, 1197 (1999).
    Cmce: body-centered orthorhombic   
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Knowledge of the behavior of silicon under high P–T conditions  
is essential for ICF, materials, and planetary sciences         

• Understanding propagation of shock 
waves through Si is essential for 
designing ICF using  
Si-based ablators

• For understanding anomalous 
convection in super-Earths with 
high concentrations of silicon-based 
coordination compounds, binary/
ternary phase diagrams are required**
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Motivation

  *F. González-Cataldo, S. Davis, and G. Gutiérrez, Sci. Rep. 6, 26537 (2016).
** F. Soubiran et al., Phys. Plasma 24, 041401 (2017). 
    D. C. Swift et al., Phys. Rev. B 64, 214107 (2001);
    B. Militzer and K. P. Driver, Phys. Rev. Lett. 115, 176403 (2015);
    S. X. Hu et al., Phys. Rev. B 94, 094109 (2016); S. X. Hu et al., Phys. Rev. E 95, 043210 (2017).
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An evolutionary algorithm-based structure search with USPEX*  
was employed to identify possible structures at zero Kelvin
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Method

* A. R. Oganov and C. W. Glass, J. Phys. Chem. 124, 244704 (2006).
  hcp: hexagonal close packed
  dhcp: double-hexagonal close-packed
  bct: body centered tetragonal
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• The methodology involves random structure searching with 1, 2, 4, 6, 8, 9, 12, and 16 Si 
atoms in a conventional unit cell looking for minimum enthalpy at a given pressure

• Transformation matrices using the strain 
parameter f were used to scale each 
structure across the pressure domain
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DFT calculations were performed for each structure to  
compare thermodynamic stability at 0 K  

• The obtained discrete data of Gibbs free 
energy were fitted with an augmented 
stabilized jellium equation of state (ASJEOS)*
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Results

* A. B. Alchagirov et al., Phys. Rev. B 63, 224115 (2001).
  sh: simple hexagonal
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Finite-temperature thermodynamic variables were obtained  
using first-principles electronic and phonon calculations
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Method

* A. B. Alchagirov et al., Phys. Rev. B 63, 224115 (2001).
  SCF: self-consistent field
  DOS: density of states
  EA: evolutionary algoritms
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Phonon density-of-state calculations* were performed at  
nonzero electron temperatures for checking anharmonicity

• Limit of validity of the quasi-harmonic (QH) approximation at finite temperatures
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Results

  *A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).
** S. G. Moustafa et al., Phys. Rev. B 96, 014117 (2017).
    FT-QMD: finite-temperature quantum molecular dynamics 
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The negative thermal expansion coefficient of cubic diamond and temperature-dependence  
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QMD calculations using an NVT ensemble with Nosé–Hoover thermostat  
were applied to determine the melting line
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Results
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Substantial differences in the Hugoniot and orthorhombic phase boundaries 
were observed as a result of anharmonic effects*
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Results

  QH: quasiharmonic
  AH: anharmonic
* R. Paul, S. X. Hu, and V. V. Karasiev (in preparation). 
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Summary/Conclusions

A high-pressure phase diagram of silicon was constructed using density 
functional theory (DFT) calculations up to a pressure of 4 TPa    

• The phases of Imma* and Cmce-16** were predicted on the phase 
diagram from computations for the first time, consistent with previous 
experimental observations

• High-pressure anomalous transition of face-centered cubic (fcc) to 
body-centered cubic (bcc) to simple cubic (sc) was predicted to occur 
at 2.87 TPa and 3.89 TPa

• Anharmonic contributions to the lattice free energy were determined 
to be essential for accurate analysis of the cubic diamond and 
orthorhombic structures

  *M. I. McMahon et al., Phys. Rev. B 50, 739 (1994).
    Imma: base-centered orthorhombic
**M. Hanfland et al., Phys. Rev. Lett. 82, 1197 (1999).
    Cmce: body-centered orthorhombic   


