High-Resolving-Power, Streaked X-Ray Spectroscopy on the OMEGA EP Laser System

Laser: 50 J, 0.7 ps
Target: 500 × 500 × 20 μm Cu

Laser: 905 J, 10 ps
Target: 250 × 250 × 10 μm Cu

P. M. Nilson
University of Rochester
Laboratory for Laser Energetics

60th Annual Meeting of the American Physical Society
Division of Plasma Physics
Portland, OR
5–9 November 2018
A platform (HiRes) has been developed on OMEGA EP to study changes in the electronic structure of metals heated to extreme conditions

- Experiments with Cu foils were performed with up to kJ-class, 10-ps laser pulses
- High-resolution Kα emission spectra, which are sensitive to ionization state, show clearly visible, time-dependent changes in energy and shape over the heating phase
- Initial $LSP^1/PrismSPECT^2$ simulations overestimate the heating rate; a more-complete physics model3 that includes additional energy sinks is in development
- Absolute calibration to test the predicted Kα-emission rates is the next step

Summary

2 Prism Computational Sciences Inc., Madison, WI 53711.
Collaborators

University of Rochester
Laboratory for Laser Energetics
1also Department of Mechanical Engineering
2also Department of Physics and Astronomy

K. W. Hill, L. Gao, M. Bitter, and P. Efthimion
Princeton Plasma Physics Laboratory

I. Golovkin
Prism Computational Sciences, Madison WI

D. D. Meyerhofer
Los Alamos National Laboratory
Motivation

Ultrafast heating at high density produces matter in extreme thermodynamic conditions

- The possible extremes in temperature enable novel material and radiative properties experiments\(^1,2\)
 - e.g., mean opacity of solar interior matter\(^3\)
- New diagnostic techniques are sought for testing
 - temperature-equilibration dynamics\(^1\)
 - plasma-dependent atomic processes\(^4\)
 - plasma opacity\(^5\)
 - equation-of-state models\(^6\)

These studies require dense, high-temperature plasmas that are well characterized.

\(^3\) J. E. Bailey et al., Nature 517, 56 (2015).
X-Ray Spectroscopy

High-resolution x-ray fluorescence spectroscopy is sensitive to time-dependent changes in ionization state

With increasing ionization, the Kα_{1,2} lines increase their energy.²–⁶

An energy-coupling and collisional-radiative model provides insight into the $K\alpha$ parameter dependence on heating

- **LSP**\(^1\) calculates
 - energy-transport physics
 - electromagnetic-field generation
 - target heating
- **LSP** is post-processed based on tabulated *PrismSPECT*\(^2\) calculations using
 - the local density and temperature at the time of emission
 - line-of-sight and high-T_e opacity effects

To measure these rapidly evolving radiation signatures, high spectral-temporal resolution is required.

\(^2\)Prism Computational Sciences Inc., Madison, WI 53711.
A high-resolving-power x-ray spectrometer (HiRes) has been developed to measure ultrafast radiation signatures from hot dense matter.

The HiRes System operates on high-power shots, with $E/\Delta E > 2000$ and 2-ps temporal resolution.
Experimental Results

Time-integrated and time-resolved measurements show clear changes in the Kα emission spectrum with increasing target energy density.

Laser: 50 J, 0.7 ps
Target: 500 × 500 × 20 μm Cu

Laser: 905 J, 10 ps
Target: 250 × 250 × 10 μm Cu

FWHM: full width at half maximum
Model Comparison

Initial analysis with LSP/PrismSPECT overestimates the temperature and ionization state inside the heated region of the target.

Data interpretation implies accurate modeling\(^1,2\) of
- the hot-electron source and heating
- spatial and temporal nonuniformities
- hydrodynamic evolution of the target
- the radiative properties of the heated sample

A more-detailed physics model is in development
- preplasma formation
- laser coupling
- target normal sheath acceleration
- hydrodynamic evolution

\(^1\) V. Dervieux et al., High Energy Density Phys. 16, 12 (2015).
Summary/Conclusions

A platform (HiRes) has been developed on OMEGA EP to study changes in the electronic structure of metals heated to extreme conditions

- Experiments with Cu foils were performed with up to kJ-class, 10-ps laser pulses
- High-resolution Kα emission spectra, which are sensitive to ionization state, show clearly visible, time-dependent changes in energy and shape over the heating phase
- Initial LSP\(^1\)/PrismSPECT\(^2\) simulations overestimate the heating rate; a more-complete physics model\(^3\) that includes additional energy sinks is in development
- Absolute calibration to test the predicted Kα-emission rates is the next step

\(^2\)Prism Computational Sciences Inc., Madison, WI 53711.
A model1 combining 3-D HYDRA and 2-D LSP shows good agreement with Kα flash-time measurements.

The HYDRA/LSP model includes:
- preplasma formation
- intense laser–plasma coupling
- hot-electron transport
- target normal sheath acceleration
- hydrodynamic evolution

Absolute calibration is the next step.