Wave-Function Amplitude Analysis of the 5He Resonance in the TT Neutron Spectrum

Z. L. Mohamed
University of Rochester
Laboratory for Laser Energetics

Total fit for 11.1-keV TT energy spectrum

- Data
- Total fit
- Lacina function
- 5He ground state
- 5He excited state
- Decay of ground state
- Decay of excited state

Energy (MeV)

60th Annual Meeting of the American Physical Society
Division of Plasma Physics
Portland, OR
5–9 November 2018
The properties of 5He are analyzed using the TT neutron spectrum

- Three sets of data at different ion temperatures are available from OMEGA implosions.
- A series of three fits was conducted as a function of energy to determine likely parameters for the components of the spectrum.
 - Results from these fits were used to constrain a forward fit to the original time series.
- 5He ground-state mass agrees with literature; width is $\sim 1.5 \times$ accepted value.
- 5He excited state was found to be about 2 MeV above the ground state with a width of 2.4 MeV.
Collaborators

J. P. Knauer and C. J. Forrest
University of Rochester
Laboratory for Laser Energetics

M. Gatu Johnson
Massachusetts Institute of Technology
Plasma Science and Fusion Center
The neutron spectrum from TT fusion is an important component of all DT ICF experiments.

- Other components include nD and nT single scatters, multiple scatters, deuterium breakup, and TT neutron spectrum.
The TT neutron spectrum includes four main contributions

1) \(T + T \rightarrow ^{5}\text{He} \text{ (ground state)} + n \)
\(^{5}\text{He} \rightarrow ^{4}\text{He} + n \)

2) \(T + T \rightarrow ^{5}\text{He}^* \text{ (first excited state)} + n \)
\(^{5}\text{He}^* \rightarrow ^{4}\text{He} + n \)

3) \(T + T \rightarrow ^{4}\text{He} + (2n) \)
\((2n) \rightarrow n + n \)

4) \(T + T \rightarrow ^{4}\text{He} + n + n \)

R-matrix analysis* can be used for two-body problems, but not three-body problems

* C. R. Brune et al., Phys. Rev. C 92, 014003 (2015);
Each reaction branch can be modeled through a convolution with a Gaussian temperature profile

- 5He states can be described by a Breit–Wigner (BW) distribution, which represents a nuclear resonance

$$\text{BW}(E, E_0, \Gamma) = \frac{k}{(E^2 - E_0^2)^2 + E_0^2 \Gamma^2}$$

with $k = \frac{2 \sqrt{2} E_0 \Gamma \gamma}{\pi \sqrt{E_0^2 + \gamma}}$ and $\gamma = E_0 \sqrt{E_0^2 + \Gamma^2}$

- Gaussian represents thermal broadening and can be described by

$$G(E, E_0, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\left(E - E_0\right)^2/2\sigma^2}$$

with $\sigma = \sqrt{\frac{2TE_0 m_n}{m_n + m_{^5\text{He}}}}$

- Convolution is applied using

$$\langle \text{BW} \ast G \rangle(x) = \int_0^\infty G(x - E', 0, \sigma) \text{BW}(E', E_0, \Gamma) dE'$$
The most accurate representation of the $T + T \to ^4\text{He} + 2n$ neutron spectrum comes from Lacina’s work.

- The general three-body spectrum for $s = 0$ can be described as an ellipse:
 $\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1$

- Lacina’s work* describes the ellipse-shaped spectrum with a modification for the dineutron state (interference term in the wave function).

Neutron data were collected at OMEGA at ion temperatures of 18.3 keV, 11.1 keV, and 3.7 keV

- These temperatures correspond to CM energies 50 keV, 36 keV, and 16 keV
- All shots were exploding pushers filled with tritium (+ some small amount of deuterium contamination)
- Detection with 13.4-m nTOF detector (xylene scintillator)
- \(V(t) = \left(\frac{50 \Omega}{k_2} \right) \frac{k_2}{k_1} \cdot \text{NLO}(E) \cdot \frac{\text{d}N}{\text{d}E} \frac{\text{d}E}{\text{d}t} \otimes \text{IRF} \)
 - NLO includes nonlinear light output, beamline attenuation, and neutron energy deposition
- Data shown are “\(\frac{\text{d}N}{\text{d}E} \)” \(\sim V(\text{d}t/\text{d}E)/\text{NLO} \), normalized to the 5-MeV point

CM: center of mass
nTOF: neutron time of flight
IRF: instrument response function
Forward fit was used to determine neutron parameters for the 5He states

- A series of fits to dN/dE (without IRF) was used to determine start parameters and boundaries for the forward fit.

- \[V(t) = \text{NLO}(E) \times \frac{dN}{dE} \text{d}t \] \(\otimes \) IRF
 - dN/dE includes 5He ground state, 5He excited state, decay of 5He states, Lacina function, and a small DT background component.

- Ground-state mean energy around 8.7 MeV, width of 0.4 MeV.

- First excited-state mean energy around 7 MeV, width of 2 MeV.
Kinematic equations must be used to convert from neutron parameters to 5He parameters

- Accepted values for ground state are mass $= 5.01222 \pm 0.00005$ amu* and half-life $= 616 \times 10^{-24} \pm 150 \times 10^{-24}$ s**

5He ground-state parameters from forward fit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground-state mass (amu)</td>
<td>$5.01221 \pm (1 \times 10^{-6})$</td>
</tr>
<tr>
<td>Ground-state width (MeV)</td>
<td>0.50354 ± 0.00728</td>
</tr>
<tr>
<td>Ground-state half-life (s)</td>
<td>$(906 \times 10^{-24}) \pm (11 \times 10^{-24})$</td>
</tr>
</tbody>
</table>

The 5He ground state agrees well with the accepted value, but lifetime/width differs from the accepted value by a factor of 1.5.

Mass and width of the 5He first excited state are not well known

- There is little agreement on the energy and width of the first excited state

<table>
<thead>
<tr>
<th>5He excited-state energy (MeV above ground state)</th>
<th>5He excited-state width</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>2.4</td>
<td>This work (with Lacina function)</td>
</tr>
<tr>
<td>2.0</td>
<td>2.4</td>
<td>Wong, Anderson, and McClure1</td>
</tr>
<tr>
<td>2.6</td>
<td>4.0</td>
<td>Fessenden and Maxson2</td>
</tr>
<tr>
<td>3.8</td>
<td>3.1</td>
<td>Arena et al.3</td>
</tr>
<tr>
<td>3.2</td>
<td>?</td>
<td>Sayre et al.4</td>
</tr>
<tr>
<td>1.3</td>
<td>3.2</td>
<td>Tilley et al.5</td>
</tr>
</tbody>
</table>

- Results from fit using Lacina function agrees with Wong’s values1

Future plans for a gamma spectrometer should enable direct measurement of 5He levels using $D + T \to ^5$He + γ.

The properties of 5He are analyzed using the TT neutron spectrum

- Three sets of data at different ion temperatures are available from OMEGA implosions
- A series of three fits was conducted as a function of energy to determine likely parameters for the components of the spectrum
 - results from these fits were used to constrain a forward fit to the original time series
- 5He ground-state mass agrees with literature; width is ~1.5× accepted value
- 5He excited state was found to be about 2 MeV above the ground state with a width of 2.4 MeV
A series of three least-squares fits was performed to determine likely parameters

- Step 1: Fit for ground state using data $E > 8.5$ MeV
- Step 2: Subtract 5He ground-state function and fit remaining data with $E < 5$ MeV
 - three-body shape (Lacina or ellipse) + Breit–Wigner
- Step 3: Subtract previous fit function from original data and fit remaining data with $E > 5$ MeV to sum of two Breit–Wigner distributions
A series of four least-squares fits was performed to determine likely parameters

- Step 1: Fit for ground state using data $E > 8.5$ MeV
- Fit function is convolution of Gaussian and Breit–Wigner
- Simultaneous fit for all three data sets
 - each data set will have same E_0 and Γ but different intensities

![Graph showing the fit for $kT = 11.1$ keV (fit for 8.5+ MeV)]
A series of four least-squares fits was performed to determine likely parameters

- Step 2: Subtract ^5He ground-state function and fit remaining data with $E < 5$ MeV
- Subtraction isolates region containing $T + T \rightarrow ^4\text{He} + 2n$ and first excited state of ^5He
- Fit function is either an ellipse or the Lacina function convolved with Gaussian
 - An additional Breit–Wigner is included to model possible neutrons from the decay of the ^5He ground state
- Simultaneous fit to all data—each has same parameters except for intensity
A series of four least-squares fits was performed to determine likely parameters

- Step 3: Subtract previous fit function from original data and fit remaining data with \(E > 5 \text{ MeV} \) to sum of two convolutions
- Subtraction here isolates data containing the ground state and first excited state of \(^5\text{He}\)
- Simultaneous fit to all data—fit functions for each data set share parameters with the exception of intensity
Kinematic equations must be used to convert from neutron parameters to 5He parameters

- 5He ground state agrees well with accepted value, but lifetime is \sim150% of accepted value

Final neutron parameters

<table>
<thead>
<tr>
<th>E0 (MeV)</th>
<th>18.3 keV</th>
<th>11.1 keV</th>
<th>3.7 keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lacina I</td>
<td>3.9492 ± 0.0350</td>
<td>11.2621 ± 0.0516</td>
<td>2.0518 ± 0.0275</td>
</tr>
<tr>
<td>Ground state E_0 (MeV)</td>
<td>8.6997 ± 0.0011</td>
<td>8.6997 ± 0.0011</td>
<td>8.6997 ± 0.0011</td>
</tr>
<tr>
<td>Ground state Γ (MeV)</td>
<td>0.4184 ± 0.0060</td>
<td>0.4184 ± 0.0060</td>
<td>0.4184 ± 0.0060</td>
</tr>
<tr>
<td>Ground state I</td>
<td>0.6970 ± 0.0074</td>
<td>1.5655 ± 0.0140</td>
<td>0.2443 ± 0.0040</td>
</tr>
<tr>
<td>Excited state E_0 (MeV)</td>
<td>7.0260 ± 0.0191</td>
<td>7.0260 ± 0.0191</td>
<td>7.0260 ± 0.0191</td>
</tr>
<tr>
<td>Excited state Γ (MeV)</td>
<td>1.9855 ± 0.1370</td>
<td>1.9855 ± 0.1370</td>
<td>1.9855 ± 0.1370</td>
</tr>
<tr>
<td>Excited state I</td>
<td>0.4301 ± 0.0420</td>
<td>0.8090 ± 0.0730</td>
<td>0.1773 ± 0.0255</td>
</tr>
<tr>
<td>R^2</td>
<td>0.9983</td>
<td>0.9982</td>
<td>0.9987</td>
</tr>
<tr>
<td>Reduced χ^2</td>
<td>1.0100</td>
<td>1.0084</td>
<td>1.0322</td>
</tr>
</tbody>
</table>

5He parameters

- *Ground state mass (amu)*: $5.01221 \pm 1e-06$
- Ground state width (MeV): 0.50354 ± 0.00728
- *Ground state half-life (s)*: $906e-24 \pm 11e-24$
- Excited state mass (amu): 5.01437 ± 0.00002
- Excited state width (MeV): 2.38851 ± 0.16475
- Excited state half-life (s): $191e-24 \pm 11e-24$

Accepted values for ground state are mass = 5.01222 ± 0.00005 amu and half-life = $616 \times 10^{-24} \pm 150 \times 10^{-24}$ s

Kinematic equations must be used to convert from neutron parameters to 5He parameters

- 5He ground state agrees well with accepted value, but lifetime is $\sim 150\%$ of accepted value

<table>
<thead>
<tr>
<th>Final neutron parameters</th>
<th>55He parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3 keV</td>
<td>Ellipse I</td>
</tr>
<tr>
<td>11.1 keV</td>
<td>Ground state E$_0$ (MeV) 8.7169 ± 0.0015</td>
</tr>
<tr>
<td>3.7 keV</td>
<td>Ground state Γ (MeV) 0.3647 ± 0.0047</td>
</tr>
<tr>
<td>Ellipse I</td>
<td>Ground state I 0.6210 ± 0.0046</td>
</tr>
<tr>
<td></td>
<td>Excited state E$_0$ (MeV) 3.0333 ± 0.0206</td>
</tr>
<tr>
<td></td>
<td>Excited state Γ (MeV) 1.9855 ± 0.6999</td>
</tr>
<tr>
<td></td>
<td>Excited state I 0.9791 ± 0.1134</td>
</tr>
<tr>
<td></td>
<td>Reduced χ^2 0.9985</td>
</tr>
</tbody>
</table>

*Ground state mass (amu) 5.01218 ± 2e-06

Ground state width (MeV) 0.43890 ± 0.00560

*Ground state half-life (s) 1040e-24 ± 11e-24

Excited state mass (amu) 5.01952 ± 0.00027

Excited state width (MeV) 6.36457 ± 0.84114

Excited state half-life (s) 72e-24 ± 8e-24

Accepted values for ground state are mass = 5.01222±0.00005 amu and half-life = $616 \times 10^{-24} \pm 150 \times 10^{-24}$ s**