Wave-Function Amplitude Analysis of the ⁵He Resonance in the TT Neutron Spectrum

Total fit for 11.1-keV TT energy spectrum

Z. L. Mohamed **University of Rochester** Laboratory for Laser Energetics

60th Annual Meeting of the **American Physical Society Division of Plasma Physics** Portland, OR 5–9 November 2018

The properties of ⁵He are analyzed using the TT neutron spectrum

- Three sets of data at different ion temperatures are available from OMEGA implosions
- A series of three fits was conducted as a function of energy to determine likely parameters for the components of the spectrum
 - results from these fits were used to constrain a forward fit to the original time series
- ⁵He ground-state mass agrees with literature; width is \sim 1.5× accepted value
- \cdot ⁵He excited state was found to be about 2 MeV above the ground state with a width of 2.4 MeV

Collaborators

J. P. Knauer and C. J. Forrest

University of Rochester Laboratory for Laser Energetics

M. Gatu Johnson

Massachusetts Institute of Technology Plasma Science and Fusion Center

The neutron spectrum from TT fusion is an important component of all DT ICF experiments

• Other components include nD and nT single scatters, multiple scatters, deuterium breakup, and TT neutron spectrum

LLE Review Quarterly Report 150, 104 (2017).

The TT neutron spectrum includes four main contributions

1) T + T \rightarrow ⁵He (ground state) + n $^{5}\text{He} \rightarrow ^{4}\text{He} + n$ 2) $T + T \rightarrow {}^{5}He^{*}$ (first excited state) + n ${}^{5}\text{He}^{*} \rightarrow {}^{4}\text{He} + n$ 3) T + T \rightarrow ⁴He + (2n) $(2n) \rightarrow n + n$ 4) $T + T \rightarrow {}^{4}He + n + n$

R-matrix analysis* can be used for two-body problems, but not three-body problems

*C. R. Brune et al., Phys. Rev. C 92, 014003 (2015); M. Gatu Johnson et al., Phys. Rev. Lett. <u>121</u>, 042501 (2018).

Each reaction branch can be modeled through a convolution with a Gaussian temperature profile

 ⁵He states can be described by a Breit–Wigner (BW) distribution, which represents a nuclear resonance

$$\mathsf{BW}(\mathbf{E}, \mathbf{E}_0, \Gamma) = \frac{\mathbf{k}}{\left(\mathbf{E}^2 - \mathbf{E}_0^2\right)^2 + \mathbf{E}_0^2 \Gamma^2} \text{ with } \mathbf{k} = \frac{2\sqrt{2} \mathbf{E}_0 \Gamma \gamma}{\pi \sqrt{\mathbf{E}_0^2 + \gamma}} \text{ and } \gamma = \mathbf{E}_0 \sqrt{\mathbf{E}_0^2 + \Gamma^2}$$

Gaussian represents thermal broadening and can be described by

$$G(\boldsymbol{E}, \boldsymbol{E}_0, \boldsymbol{\sigma}) = \frac{1}{\sqrt{2\pi}\sigma} \boldsymbol{e}^{-(\boldsymbol{E}-\boldsymbol{E}_0)^2/2\sigma^2} \text{ with } \boldsymbol{\sigma} = \sqrt{\frac{2T\boldsymbol{E}_0 \boldsymbol{m}_n}{\boldsymbol{m}_n + \boldsymbol{m}_{^5}}}$$

• Convolution is applied using $(\mathbf{BW} * \mathbf{G})(\mathbf{x}) = I \int_{\mathbf{0}}^{\infty} \mathbf{G}(\mathbf{x} - \mathbf{E}', \mathbf{0}, \mathbf{\sigma}) \mathbf{BW}(\mathbf{E}', \mathbf{E}_{\mathbf{0}}, \Gamma) d\mathbf{E}'$

The most accurate representation of the T + T \rightarrow ⁴He + 2n neutron spectrum comes from Lacina's work

• The general three-body spectrum for s = 0can be described as an ellipse

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

Lacina's work* describes the ellipse-shaped • spectrum with a modification for the dineutron state (interference term in the wave function)

Neutron data were collected at OMEGA at ion temperatures of 18.3 keV, 11.1 keV, and 3.7 keV

- These temperatures correspond to CM energies 50 keV, 36 keV, and 16 keV
- All shots were exploding pushers filled with tritium (+ some small amount of deuterium contamination)
- Detection with 13.4-m nTOF detector (xylene scintillator)

•
$$V(t) = \left[50\Omega * \frac{k_2}{k_1} * \text{NLO}(E) * \frac{dN}{dE} \frac{dE}{dt} \right] \otimes \text{IRF}$$

- NLO includes nonlinear light output, beamline attenuation, and neutron energy deposition
- Data shown are "dN/dE" ~V * (dt/dE) / NLO, normalized to the 5-MeV point

CM: center of mass nTOF: neutron time of flight **IRF:instrument response function**

Forward fit was used to determine neutron parameters for the ⁵He states

- A series of fits to "d*N*/d*E*" (without IRF) was used to determine start parameters and boundaries for the forward fit
- $V(t) = \left(\text{NLO}(E) * \frac{dN}{dE} \frac{dE}{dt} \right) \otimes \text{IRF}$
 - dN/dE includes ⁵He ground state, ⁵He excited state, decay of ⁵He states, Lacina function, and a small DT background component
- Ground-state mean energy around 8.7 MeV, width of 0.4 MeV
- First excited-state mean energy around 7 MeV, width of 2 MeV

Kochester

Kinematic equations must be used to convert from neutron parameters to ⁵He parameters

- Accepted values for ground state are mass = 5.01222 ± 0.00005 amu* and half-life = $616\times10^{-24}\pm150\times10^{-24}$ s**

⁵He ground-state parameters from forward fit

Ground-state mass (amu)	5.01221 \pm (1 × 10 ⁻⁶)
Ground-state width (MeV)	0.50354±0.00728
Ground-state half-life (s)	$(906 \times 10^{-24}) \pm (11 \times 10^{-24})$

The ⁵He ground state agrees well with the accepted value, but lifetime/width differs from the accepted value by a factor of 1.5.

*G. Audi *et al.*, Nucl. Phys. A <u>729</u>, 3 (2003). **C. Wong, J. D. Anderson, and J. W. McClure, Nucl. Phys. <u>71</u>, 106 (1965).

Mass and width of the ⁵He first excited state are not well known

• There is little agreement on the energy and width of the first excited state

⁵ He excited-state energy (MeV above ground state)	⁵ He excited-state width	Source
2.0	2.4	This work (with Lacina function)
2.0	2.4	Wong, Anderson, an McClure ¹
2.6	4.0	Fessenden and Maxso
3.8	3.1	Arena <i>et al.</i> ³
3.2	?	Sayre <i>et al.</i> ⁴
1.3	3.2	Tilley <i>et al.</i> ⁵

Results from fit using Lacina function agrees with Wong's values¹

Future plans for a gamma spectrometer should enable direct measurement of ⁵He levels using D + T \rightarrow ⁵He + γ .

¹ C. Wong, J. D. Anderson, and J. W. McClure, Nucl. Phys. <u>71</u>, 106 (1965).

⁴ D. B. Sayre *et al.*, Phys. Rev. Lett. <u>111</u>, 052501 (2013). ⁵ D. R. Tilley *et al.*, "Energy Levels of Light Nuclei A = 5," http://www.tunl.duke.edu/ nucldata/ourpubs/05 2002.pdf (28 September 2017) (unpublished).

² P. Fessenden and D. R. Maxson, Phys. Rev. 133, B71 (1964).

³ N. Arena et al., J. Phys. Soc. Jpn. <u>60</u>, 100 (1991).

The properties of ⁵He are analyzed using the TT neutron spectrum

- Three sets of data at different ion temperatures are available from OMEGA implosions
- A series of three fits was conducted as a function of energy to determine likely parameters for the components of the spectrum
 - results from these fits were used to constrain a forward fit to the original time series
- ⁵He ground-state mass agrees with literature; width is \sim 1.5× accepted value
- \cdot ⁵He excited state was found to be about 2 MeV above the ground state with a width of 2.4 MeV

A series of three least-squares fits was performed to determine likely parameters

- Step 1: Fit for ground state using data E > 8.5 MeV
- Step 2: Subtract ⁵He ground-state function and fit remaining data with E < 5 MeV
 - three-body shape (Lacina or ellipse) + Breit–Wigner
- Step 3: Subtract previous fit function from original data and fit remaining data with E > 5 MeV to sum of two Breit–Wigner distributions

A series of four least-squares fits was performed to determine likely parameters

- Step 1: Fit for ground state using data *E* > 8.5 MeV
- Fit function is convolution of Gaussian and Breit–Wigner
- Simultaneous fit for all three data sets
 - each data set will have same E_0 and Γ but different intensities

A series of four least-squares fits was performed to determine likely parameters

E28071

KOCHESTER

- Step 2: Subtract ⁵He ground-state function and fit remaining data with E < 5 MeV
- Subtraction isolates region containing T + T \rightarrow ⁴He + 2n and first excited state of ⁵He
- Fit function is either an ellipse or the Lacina function convolved with Gaussian
 - An additional Breit–Wigner is included to model possible neutrons from the decay of the ⁵He ground state
- Simultaneous fit to all data—each has same parameters except for intensity •

A series of four least-squares fits was performed to determine likely parameters

- Step 3: Subtract previous fit function from original data and fit remaining data with E > 5 MeV to sum of two convolutions
- Subtraction here isolates data containing the ground state and first excited state of ⁵He
- Simultaneous fit to all data—fit functions for each data set share parameters with the exception of intensity

Kinematic equations must be used to convert from neutron parameters to ⁵He parameters

• ⁵He ground state agrees well with accepted value, but lifetime is \sim 150% of accepted value

i mai neutron parameters				
	18.3 keV	11.1 keV	3.7 keV	
Lacina I	3.9492 ±	11.2621 ±	2.0518 ±	
	0.0350	0.0516	0.0275	
Ground state	8.6997 ±	8.6997 ±	8.6997 ±	
E ₀ (MeV)	0.0011	0.0011	0.0011	
Ground state Γ	0.4184 ±	0.4184 ±	0.4184 ±	
(MeV)	0.0060	0.0060	0.0060	
Ground state I	0.6970 ±	1.5655 ±	0.2443 ±	
	0.0074	0.0140	0.0040	
Excited state E ₀	7.0260 ±	7.0260 ±	7.0260 ±	
(MeV)	0.0191	0.0191	0.0191	
Excited state 	1.9855 ±	1.9855 ±	1.9855 ±	
(MeV)	0.1370	0.1370	0.1370	
Excited state I	0.4301 ±	0.8090 ±	0.1773 ±	
	0.0420	0.0730	0.0255	
\mathbb{R}^2	0.9983	0.9982	0.9957	
Reduced χ ²	1.0100	1.0084	1.0322	

Final neutron parameters

⁵He parameters

*Ground state mass	5.01221 ± 1e-0
(amu)	
Ground state width	0.50354 ± 0.007
(MeV)	
*Ground state half-life	906e-24 ± 11e-
(s)	
Excited state mass	5.01437 ± 0.000
(amu)	
Excited state width	2.38851 ± 0.16 4
(MeV)	
Excited state half-life	191e-24 ± 11e-
(s)	

Accepted values for ground state are $mass = 5.01222 \pm 0.00005 amu^$ and half-life = $616 \times 10^{-24} \pm 150 \times 10^{-24} \text{ s}^{**}$

** C. Wong, J. D. Anderson, and J. W. McClure, Nucl. Phys. 71, 106 (1965).

^{*}G. Audi et al., Nucl. Phys. A 729, 3 (2003).

Kinematic equations must be used to convert from neutron parameters to ⁵He parameters

• ⁵He ground state agrees well with accepted value, but lifetime is \sim 150% of accepted value

i mai neutron parameters				
	18.3 keV	11.1 keV	3.7 keV	
Ellipse I	3.3357 ±	8.8917 ±	1.6964 ±	
	0.0206	0.0525	0.0168	
Ground state	8.7169 ±	8.7169 ±	8.7169 ±	
E ₀ (MeV)	0.0015	0.0015	0.0015	
Ground state <i>\mathcal{\Gamma}</i>	0.3647 ±	0.3647 ±	0.3647 ±	
(MeV)	0.0047	0.0047	0.0047	
Ground state I	0.6210 ±	1.3797 ±	0.2096 ±	
	0.0046	0.0091	0.0034	
Excited state E ₀	3.0333 ±	3.0333 ±	3.0333 ±	
(MeV)	0.2065	0.2065	0.2065	
Excited state <i>Γ</i>	1.9855 ±	1.9855 ±	1.9855 ±	
(MeV)	0.6999	0.6999	0.6999	
Excited state I	0.9791 ±	4.1094 ±	0.4520 ±	
	0.1134	0.3270	0.0898	
R ²	0.9985	0.9980	0.9957	
Reduced χ ²	1.0094	1.0084	1.0084	

Final neutron parameters

⁵He parameters

*Ground state mass	5.01218 ± 2e-06
(amu)	
Ground state width	0.43890 ± 0.0056
(MeV)	
*Ground state half-life	1040e-24 ± 11e-2
(s)	
Excited state mass	5.01952 ± 0.0002
(amu)	
Excited state width	6.36457 ± 0.8411
(MeV)	
Excited state half-life	72e-24 ± 8e-24
(\$)	

Accepted values for ground state are $mass = 5.01222 \pm 0.00005 amu^$ and half-life = $616 \times 10^{-24} \pm 150 \times 10^{-24} \text{ s}^{**}$

** C. Wong, J. D. Anderson, and J. W. McClure, Nucl. Phys. 71, 106 (1965).

^{*}G. Audi et al., Nucl. Phys. A 729, 3 (2003).