## *In-Situ* Measurements of Direct-Drive **Illumination Uniformity on OMEGA**



F. J. Marshall **University of Rochester** Laboratory for Laser Energetics 60th Annual Meeting of the **American Physical Society Division of Plasma Physics** Portland, OR 5–9 November 2018





### Image after correction for limb brightening



## **Experiments performed on the OMEGA Laser System have** measured the 60-beam, direct-drive illumination uniformity

- The Legendre modes ( $\ell$  < 30) UV illumination variations are inferred from images of x-ray emission from Au-coated spherical targets (at  $I \approx 7 \times 10^{14}$ , 100-ps pulses)
- Inference of illumination uniformity has been performed under best current conditions (clean debris shields, precision pointing, good beam balance)
- Beam-overlap illumination variation and stalk shadowing have both been observed with this method
- The  $\sigma_{\rm rms}$  uniformity for standard-size targets (860- $\mu$ m diam) approaches 1% (with less than 1% in all low  $\ell$ -modes above  $\ell = 2$ , individually and combined)





### **Collaborators**

### V. N. Goncharov, J. H. Kelly, T. Z. Kosc, and A. Shvydky

University of Rochester Laboratory for Laser Energetics





# The emission from spherical, Au-coated targets is corrected for limb brightening\* to infer the local x-ray surface flux



E11296a



\*F. J. Marshall *et al.*, Phys. Plasmas <u>11</u>, 251 (2004); R. A. Forties and F. J. Marshall, Rev. Sci. Instrum. <u>76</u>, 073505 (2005). CID: charge-injection device

# When corrected for limb brightening, the x-ray images reveal peaks at the beam overlaps and low mode variation



for limb brightening

Limb-brightened image (uncorrected) Median filtered 60-μm region

E28007



TIM: ten-inch manipulator XRPHC: x-ray pinhole camera

### The inferred UV illumination variation is determined from the x-ray emission variation using a power law







\*F. J. Marshall et al., Phys. Plasmas 11, 251 (2004).

### The depth of a stalk shadow is inferred from the assumed power law correspondence



This target stalk is in the same direction as current cryogenic targets.

E28009





## Viewing camera image of target



### Corrected images must be reprojected and combined to infer the illumination variation over the target surface

$$I_{\boldsymbol{x}}(\boldsymbol{\theta},\boldsymbol{\varphi}) = \frac{\sum f_{\boldsymbol{x}_{i}}(\boldsymbol{\theta},\boldsymbol{\varphi}) \boldsymbol{w}_{i}(\boldsymbol{\theta},\boldsymbol{\varphi})}{\sum \boldsymbol{w}_{i}(\boldsymbol{\theta},\boldsymbol{\varphi})}$$

where  $I_x(\theta, \varphi)$  is the relative intensity at  $(\theta, \varphi)$ ,  $f_{x_i}$  is the contribution from the *i*th x-ray camera, and  $w_i$  is the weight

The cameras are cross-calibrated, the images reprojected and combined, after which the UV intensity variation is inferred using the power law correspondence

$$I_{\rm UV} \propto \left(I_{\rm X}
ight)^{(1/\gamma)}$$

The ten nearly identical CID-based XRPHC images (six TIM based, four fixed) are used to compute the full-sphere illumination uniformity.







### Multiple XRPHC CID images of Au-coated targets are combined to determine the inferred UV illumination uniformity



E28011







### TPS: Target Positioning System HED: high-energy diode

# OMEGA direct-drive illumination uniformity inferred from x-ray images of Au-coated sphere emission approaches 1% rms

OMEGA shot 87286, uniformity target 858- $\mu$ m-diam, Au-coated sphere

Conditions: 60 UV beams, 100-ps pulse SG5 DPP's, 0.3-THz SSD, 3-color cycle 25 J/beam, 3.5% rms (beam-to-beam)



9 XRPHC-CID-image derived map





DPP: distributed phase plate SSD: smoothing by spectral dispersion p–v: peak-to-valley

### The inferred low-mode OMEGA direct-drive illumination uniformity has no significant contributions above $\ell = 2$



E28089







### Summary/Conclusions

### **Experiments performed on the OMEGA Laser System have** measured the 60-beam, direct-drive illumination uniformity

- The Legendre modes ( $\ell$  < 30) UV illumination variations are inferred from images of x-ray emission from Au-coated spherical targets (at  $I \approx 7 \times 10^{14}$ , 100-ps pulses)
- Inference of illumination uniformity has been performed under best current conditions (clean debris shields, precision pointing, good beam balance)
- Beam-overlap illumination variation and stalk shadowing have both been observed with this method
- The  $\sigma_{\rm rms}$  uniformity for standard-size targets (860- $\mu$ m diam) approaches 1% (with less than 1% in all low  $\ell$ -modes above  $\ell = 2$ , individually and combined)



E28006









### Isometric drawing of the interior of the OMEGA target chamber showing five fixed (yellow noses) and six TIM-based (blue noses) XRPHC's



E28090







### Hammer–Aitoff projection of the OMEGA target chamber showing XRPHC locations: five fixed (yellow), 6 TIM-based (blue) XRPHC's



11 digitally recorded x-ray pinhole cameras record the target surface emission





