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Significant progress has been made implementing the LLE ray trace in 
HYDRA;* however, further work remains to minimize numerical noise

•	 The complete inverse projection method implemented in DRACO** offers many advantages 
that can port to HYDRA

–– low ray density achieves low noise levels; includes additional methods (below)
–– smooth deposition maximizes time steps " faster execution
–– the anticipated smooth deposition exposes potential noise sources

•	 The first stage of implementation is complete and significantly reduced noise levels to the 
order of the overlapped nonuniformity (~ few %)

•	 Additional methods are required for high-fidelity (noise below overlapped nonuniformity) 
direct-drive simulations 

–– random dithering
–– dynamic refraction compensation (multiple methods)
–– adaptive ray integrators and cell-edge detection

2

Summary

	*	M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001).
**	J. A. Marozas et al., Phys. Plasmas 25, 056314 (2018).
   M. M. Marinak et al., UP11.00115, this conference.

•	 Work on adapting the existing CBET model to direct drive in HYDRA will follow.
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Four main categories of reducing laser deposition noise are included 
in the LLE* ray trace; staged approach

•	 Ray-trace noise reduction
–– an inverse-projection algorithm defines the initial 
ray-position distribution and energies—complete

-- this is the primary noise-reduction aspect
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Four main categories of reducing laser deposition noise are included 
in the LLE* ray trace; staged approach

•	 Ray-trace noise reduction
–– an inverse-projection algorithm defines the initial 
ray-position distribution and energies—complete

-- this is the primary noise-reduction aspect
–– dynamic adjustment of inverse projection partially 
compensates for refraction and reduces noise

-- in progress

5

Critical
surface

P
o

le

Equator

Surrogate
surface

0
xff (mm)

y f
f (

m
m
)

–1 1 2–2

–2

–1

0

1

2

Far-field plane

Phase 1 Inverse
 projection

Phase 2

Refraction
compensation

*	J. A. Marozas et al., Phys. Plasmas 25, 056314 (2018).



TC7537f

Four main categories of reducing laser deposition noise are included 
in the LLE* ray trace; staged approach

•	 Ray-trace noise reduction
–– an inverse-projection algorithm defines the initial 
ray-position distribution and energies—complete

-- this is the primary noise-reduction aspect
–– dynamic adjustment of inverse projection partially 
compensates for refraction and reduces noise

-- in progress
–– adaptive integrators

-- future work
–– accurate cell-edge crossing detection using root 
polishing; never loses a ray on entry/exit

-- future work
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Four main categories of reducing laser deposition noise are included 
in the LLE* ray trace; staged approach

•	 Ray-trace noise reduction
–– an inverse-projection algorithm defines the initial 
ray-position distribution and energies—complete

-- this is the primary noise-reduction aspect
–– dynamic adjustment of inverse projection partially 
compensates for refraction and reduces noise

-- in progress
–– adaptive integrators

-- future work
–– accurate cell-edge crossing detection using root 
polishing; never loses a ray on entry/exit

-- future work

•	 Applying higher ray density and boxcar filtering  
helps reduce noise but masks any artifacts and  
adds diffusion
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The basic inverse projection algorithm maps out the percent of critical 
surfaces to form a set of aim points in 3-D HYDRA
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The basic inverse projection algorithm maps out the percent of critical 
surfaces to form a set of aim points in 3-D HYDRA
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The basic inverse projection algorithm maps out the percent of critical 
surfaces to form a set of aim points in 3-D HYDRA
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The basic inverse-projection algorithm back-projects the aim-point distribution 
onto the far-fi eld plane to form the set of launch points that do not bias the 
modal pattern

TC14594

Rays are aimed at evenly distributed 
points using an isoparametric 
mapping within HYDRA’s cells

• Once the atmosphere develops, many layers 
of percent-critical form the surfaces

In the far-fi eld plane, the back-projected 
points sample the intensity and derive 
energy from their area projections
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The early-time–deposited energy density in HYDRA illustrates the dramatic 
noise reduction—the standard illumination cf. the inverse projection methods
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The number of rays needs to increase > order-of-magnitude  
before the expected smooth pattern begins to emerge
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The number of rays needs to increase orders of magnitude before converging 
towards the expected smooth pattern
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The benefits of the basic inverse projection persist into late-time evolution

15
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20 40

Polar angle (°)

Rays pointed to 
the critical surface

In
te

g
ra

te
d

 in
te

n
si

ty
 (

W
/c

m
2 )

 

60 800
2.29

2.30

2.31

2.32

2.34

2.33

2.35

20 40

Polar angle (°)

Rays pointed to 
the surrogate surface

60 800

Beam port angles

Critical
surface

P
o

le

Equator

Surrogate
surface

Refraction compensation

TC14595

A dynamic inverse-projection algorithm accounts for refraction and helps 
maintain smooth deposition—for example, DRACO

•	 An optimization algorithm locates 
the surrogate surface in DRACO

•	 HYDRA will employ this method 
plus a Delaunay/Voronoi 
triangulation method

16

Phase 2



TC14596

A proof-of-principle approximation of the simple dynamic refraction 
compensation promises additional control of numeric noise in 3-D HYDRA
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Radially integrated deposition patterns from DRACO illustrate the benefits  
of using adaptive integrators

•	 Lower binning noise
•	 More accurate overall deposition
•	 Lower errors at beam centers
•	 More computationally efficient
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Summary/Conclusions 

Significant progress has been made implementing the LLE ray trace in 
HYDRA;* however, further work remains to minimize numerical noise

•	 The complete inverse projection method implemented in DRACO** offers many advantages 
that can port to HYDRA

–– low ray density achieves low noise levels; includes additional methods (below)
–– smooth deposition maximizes time steps " faster execution
–– the anticipated smooth deposition exposes potential noise sources

•	 The first stage of implementation is complete and significantly reduced noise levels to the 
order of the overlapped nonuniformity (~ few %)

•	 Additional methods are required for high-fidelity (noise below overlapped nonuniformity) 
direct-drive simulations 

–– random dithering
–– dynamic refraction compensation (multiple methods)
–– adaptive ray integrators and cell-edge detection

•	 Work on adapting the existing CBET model to direct drive in HYDRA will follow.

	*	M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001).
**	J. A. Marozas et al., Phys. Plasmas 25, 056314 (2018).
   M. M. Marinak et al., UP11.00115, this conference.



Backup slides
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The shell is more uniform using half the number of rays for inverse-projection, 
cf. the random distribution
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Random dithering when combined with refraction compensation shows the 
most control of numeric noise in 3-D HYDRA
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