Implementation of the Low-Noise, 3-D Ray-Trace Inverse-Projection Method in the Radiation-Hydrodynamics Code HYDRA

J. A. Marozas **University of Rochester** Laboratory for Laser Energetics

60th Annual Meeting of the **American Physical Society Division of Plasma Physics** Portland, OR 5–9 November 2018

Summary

Significant progress has been made implementing the LLE ray trace in HYDRA;* however, further work remains to minimize numerical noise

- The complete inverse projection method implemented in DRACO^{**} offers many advantages that can port to HYDRA
 - low ray density achieves low noise levels; includes additional methods (below)
 - smooth deposition maximizes time steps \rightarrow faster execution
 - the anticipated smooth deposition exposes potential noise sources
- The first stage of implementation is complete and significantly reduced noise levels to the order of the overlapped nonuniformity (\sim few %)
- Additional methods are required for high-fidelity (noise below overlapped nonuniformity) direct-drive simulations
 - random dithering
 - dynamic refraction compensation (multiple methods)
 - adaptive ray integrators and cell-edge detection

• Work on adapting the existing CBET model to direct drive in HYDRA will follow.

*M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001). **J. A. Marozas et al., Phys. Plasmas 25, 056314 (2018). M. M. Marinak et al., UP11.00115, this conference.

TC14592

Collaborators

G. D. Kerbel, M. M. Marinak, and S. Sepke Lawrence Livermore National Laboratory

Ray-trace noise reduction

Phase 1

- an inverse-projection algorithm defines the initial ray-position distribution and energies—complete
 - this is the primary noise-reduction aspect

TC7537d

*J. A. Marozas et al., Phys. Plasmas 25, 056314 (2018).

 Ray-trace noise reduction 2 – an inverse-projection algorithm defines the initial y_{ff} (mm) Phase 1 ray-position distribution and energies-complete 0 0 - this is the primary noise-reduction aspect -1 - dynamic adjustment of inverse projection partially Phase 2 -2 compensates for refraction and reduces noise -2 0 -1 1 - in progress x_{ff} (mm)

*J. A. Marozas et al., Phys. Plasmas 25, 056314 (2018).

Refraction compensation

Equator

*J. A. Marozas et al., Phys. Plasmas 25, 056314 (2018).

		i al-lielu piali
•	Ray-trace noise reduction	2
Phase 1	 an inverse-projection algorithm defines the initial ray-position distribution and energies—complete this is the primary noise-reduction aspect 	() 1 - () () () () () () () () () () () () ()
Phase 2	 dynamic adjustment of inverse projection partially compensates for refraction and reduces noise in progress 	-2 -2 -1 0 1 x _{ff} (mm)
Phase 3	 adaptive integrators future work 	
Phase 4	 accurate cell-edge crossing detection using root polishing; never loses a ray on entry/exit future work 	Bole
•	Applying higher ray density and boxcar filtering helps reduce noise but masks any artifacts and	

adds diffusion

TC7537g

ROCHESTER

Equator

Refraction compensation

ical ace

*J. A. Marozas et al., Phys. Plasmas 25, 056314 (2018).

The basic inverse projection algorithm maps out the percent of critical surfaces to form a set of aim points in 3-D HYDRA

TC14505 ROCHESTER

HYRDA hexahedral mesh Nodal points

The basic inverse projection algorithm maps out the percent of critical surfaces to form a set of aim points in 3-D HYDRA

TC14505a

HYRDA hexahedral mesh

The basic inverse projection algorithm maps out the percent of critical surfaces to form a set of aim points in 3-D HYDRA

TC14505b

HYRDA hexahedral mesh Nodal points

mapping of the percent critical surface

The basic inverse-projection algorithm back-projects the aim-point distribution onto the far-field plane to form the set of launch points that do not bias the modal pattern

• Once the atmosphere develops, many layers of percent-critical form the surfaces

The early-time–deposited energy density in *HYDRA* illustrates the dramatic noise reduction—the standard illumination cf. the inverse projection methods

ROCHESTER

The number of rays needs to increase > order-of-magnitude before the expected smooth pattern begins to emerge

ROCHESTER

The number of rays needs to increase orders of magnitude before converging towards the expected smooth pattern

The benefits of the basic inverse projection persist into late-time evolution

TC14507

A dynamic inverse-projection algorithm accounts for refraction and helps maintain smooth deposition—for example, DRACO

- HYDRA will employ this method plus a Delaunay/Voronoi triangulation method

TC14595

An optimization algorithm locates the surrogate surface in DRACO

A proof-of-principle approximation of the simple dynamic refraction compensation promises additional control of numeric noise in 3-D HYDRA

TC14596

Phases 3, 4

Radially integrated deposition patterns from *DRACO* illustrate the benefits of using adaptive integrators

- Lower binning noise
- More accurate overall deposition
- Lower errors at beam centers
- More computationally efficient

deposition centers efficient

Summary/Conclusions

Significant progress has been made implementing the LLE ray trace in HYDRA;* however, further work remains to minimize numerical noise

- The complete inverse projection method implemented in DRACO^{**} offers many advantages that can port to HYDRA
 - low ray density achieves low noise levels; includes additional methods (below)
 - smooth deposition maximizes time steps \rightarrow faster execution
 - the anticipated smooth deposition exposes potential noise sources
- The first stage of implementation is complete and significantly reduced noise levels to the order of the overlapped nonuniformity (\sim few %)
- Additional methods are required for high-fidelity (noise below overlapped nonuniformity) direct-drive simulations
 - random dithering
 - dynamic refraction compensation (multiple methods)
 - adaptive ray integrators and cell-edge detection

• Work on adapting the existing CBET model to direct drive in HYDRA will follow.

TC14592

*M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001). **J. A. Marozas et al., Phys. Plasmas 25, 056314 (2018). M. M. Marinak et al., UP11.00115, this conference.

Backup slides

The shell is more uniform using half the number of rays for inverse-projection, cf. the random distribution

Random dithering when combined with refraction compensation shows the most control of numeric noise in 3-D HYDRA

