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The confinement of a laser plasma in a strong magnetic field  
has been observed in the simulations with HYDRA

• In the cylindrical geometry, disk-type density structures are 
generated because of the coupling of laser light to the target  
in azimuthal magnetic fields

• Resistive magnetohydrodynamics (MHD’s) are used for modeling 
and the role of other terms in Ohm’s law is assessed 

• At early time the thermal pressure in the expanding plasma  
is greater than the magnetic pressure, which explains  
the radial expansion of the disk-type structure at later times

• As the plasma disk expands, the magnetic fields inside the disk 
can reach a magnitude comparable to the external azimuthal 
magnetic fields
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Inertial confinement fFusion (ICF) platforms are incorporating  
magnetic fields to aid in path toward ignition

• Multiple concepts in development 
at Lawrence Livermore National 
Laboratory, Sandia National 
Laboratories, and the Laboratory  
for Laser Energetics

• All magneto-inertial fusion concepts 
have some interaction of magnetic 
fields and laser plasmas

• By coupling pulsed-power machines 
with high-energy lasers, the effect  
of magnetic fields on ICF targets  
can be better understood
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MagLIF: magnetized liner inertial fusion MIFEDS: magneto-inertial fusion electrical discharge system 
D. J. Strozzi et al., Lawrence Livermore National Laboratory, Livermore, CA, Report LLNL-CONF-672979 (2015).
M. Hohenberger et al., Bull. Am. Phys. Soc. 56, BAPS.2011.DPP.YI3.2 (2011).
M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014).
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Disk-type plasma structures have been observed  
in recent experiments in magnetic fields
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• Experiments were done at the University  
of Nevada, Reno coupling the Zebra 
Pulsed-Power Machine and Leopard Laser

• Using a current of about 1 MA, magnetic 
fields generated near the rod were about  
3 MG = 300 T

• The laser was focused to a spot  
of 30 nm with an intensity  
of ~3 × 1015 W/cm2 for ~1 ns 

• UV shadowgraphs with the current  
in the rod show the disk plasma,  
not present without the current  
with a measured electron density  
of 2 × 1019 cm–3 and electron  
temperature of 400 eV
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The model in HYDRA uses resistive MHD in 2-D r–z geometry
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The relative importance of different terms  
in the Ohm’s Law has been evaluated

• The induction term dominates

• The plasma parameters 
electron density ne = 2 × 1019  cm−3  
electron temperature Te = 1 keV  
scale length l = 0.002 cm = 20 nm
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Disk-type plasma structures have been observed in simulations  
with the current in the rod
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With time, the plasma disk expands in the radial direction

9

y 
(c

m
)

–0.1

0.0

0.1
1018

1019

1020

1021

1022

Expanding 700 to 1000 km/sWidth = 100 nm

<1

30

1000

y 
(c

m
)

–0.1

0.0

0.1
keVcm–3

2 ns after 
the pulse

4 ns after 
the pulse

Electron density
(#1013 cm–3)

1050

1
2
3

D
is

ta
nc

e
( #

10
–2

 c
m

) 

x (cm)
0.3 0.4 0.50.20.1

x (cm)
0.3 0.4 0.50.20.1

keV



TC14536

The magnetic-field evolution follows the evolution of the disk
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The profile of the plasma pressure parameter b in the axial direction  
illustrates the localization of the plasma disk
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The Hall parameter in the plasma characterizes the influence  
of the magnetic fields on the transport in plasma
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Summary/Conclusions 

The confinement of a laser plasma in a strong magnetic field  
has been observed in the simulations with HYDRA

• In the cylindrical geometry, disk-type density structures are 
generated because of the coupling of laser light to the target  
in azimuthal magnetic fields

• Resistive magnetohydrodynamics (MHD’s) are used for modeling 
and the role of other terms in Ohm’s law is assessed 

• At early time the thermal pressure in the expanding plasma  
is greater than the magnetic pressure, which explains  
the radial expansion of the disk-type structure at later times

• As the plasma disk expands, the magnetic fields inside the disk 
can reach a magnitude comparable to the external azimuthal 
magnetic fields
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The mean free path and Larmor radius change  
by many orders of magnitude in the modeled plasma 
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